Search result: Catalogue data in Spring Semester 2019

Mechanical Engineering Master Information
Core Courses
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
376-1392-00LMechanobiology: Implications for Development, Regeneration and Tissue EngineeringW3 credits2GA. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong
AbstractThis course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs.
ObjectiveThis course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena.
ContentTypically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance.

The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering.
Lecture notesn/a
LiteratureTopical Scientific Manuscripts
376-1397-00LOrthopaedic Biomechanics Restricted registration - show details
Number of participants limited to 48.
W3 credits2GR. Müller, P. Atkins
AbstractThis course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure.
ObjectiveTo apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context.
ContentEngineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering.
Lecture notesStored on ILIAS.
LiteratureOrthopaedic Biomechanics:
Mechanics and Design in Musculoskeletal Systems

Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny
Publisher: Prentice Hall; Copyright: 2007
ISBN-10: 0130089095; ISBN-13: 9780130089090
Prerequisites / NoticeLectures will be given in English.
376-1614-00LPrinciples in Tissue EngineeringW3 credits2VK. Maniura, J. Möller, M. Zenobi-Wong
AbstractFundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
ObjectiveUnderstanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed.
ContentThis class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
Lecture notesHandouts provided during the classes and references therin.
LiteratureThe molecular Biology of the Cell, Alberts et al., 5th Edition, 2009.
Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002
376-1721-00LBone Biology and Consequences for Human HealthW2 credits2VG. A. Kuhn, J. Goldhahn, E. Wehrle
AbstractBone is a complex tissue that continuously adapts to mechanical and metabolic demands. Failure of this remodeling results in reduced mechanic stability ot the skeleton. This course will provide the basic knowledge to understand the biology and pathophysiology of bone necessary for engineering of bone tissue and design of implants.
ObjectiveAfter completing this course, students will be able to understand:
a) the biological and mechanical aspects of normal bone remodeling
b) pathological changes and their consequences for the musculoskeletal system
c) the consequences for implant design, tissue engineering and treatment interventions.
ContentBone adapts continuously to mechanical and metabolic demands by complex remodeling processes. This course will deal with biological processes in bone tissue from cell to tissue level. This lecture will cover mechanisms of bone building (anabolic side), bone resorption (catabolic side), their coupling, and regulation mechanisms. It will also cover pathological changes and typical diseases like osteoporosis. Consequences for musculoskeletal health and their clinical relevance will be discussed. Requirements for tissue engineering as well as implant modification will be presented. Actual examples from research and development will be utilized for illustration.
376-1984-00LLasers in Medicine
Does not take place this semester.
W3 credits3G
AbstractThe lecture will provide answers to questions such as: Why lasers? How do lasers work? How does light interact with tissue? We will concentrate on three major interaction categories: Therapeutic (from cell surgery to vision correction and general surgery), Diagnostic (from detection of neural cell activity to diagnostics of cancer), and Imaging (from single molecules to optical tomography).
ObjectiveIntroduction into medical laser applications. Understanding of the physics underlaying the laser-tissue-interaction in order to understand the influence of different irradiation parameters on tissue effects. Basics of diagnostic laser applications as well as laser safety.
ContentLasers become increasingly important in almost all medical disciplines especially where they can be used selectively to treat soft and hard tissue in a non-invasive manner or for diagnostic purposes. Basic mechanisms of light propagation in tissue as well as laser-tissue-interactions i.e. photochemical, photothermal and photomechanical interaction will be discussed. The influence of laser wavelength and pulse duration on the interaction process will be studied. Different laser and beam delivery systems used in medicine will be presented. Different clinical laser applications in ophthalmology, urology, gynecology and ENT-surgery will be discussed. Diagnostic applications as well as biomedical imaging techniques are considered. Laser safety.
Lecture noteswill be published in the Internet
Literature- M. Born, E. Wolf, "Principles of Optics", Pergamon Press
- B.E.A. Saleh, M.C. Teich, "Fundamentals of Photonics", John Wiley and Sons, Inc.
- A.E. Siegman, "Lasers", University Science Books
- O. Svelto, "Principles of Lasers", Plenum Press
- J. Eichler, T. Seiler, "Lasertechnik in der Medizin", Springer Verlag
- M.H. Niemz, "Laser-Tissue Interaction", Springer Verlag
- A.J. Welch, M.J.C. van Gemert, "Optical-thermal response of laser-irradiated
tissue", Plenum Press
Design, Computation, Product Development & Manufacturing
The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor.
151-0315-00LDevelopment of Complex Mechatronic Systems for Manufacturing
Does not take place this semester.
W4 credits3GK. Wegener
AbstractFor mechatronic products, the focus in on the various product features and on the multidisciplinary of expertise. The lecture thus explains tools and methods for a successful development of complex mechatronic systems in machine and plant engineering. It covers the whole process chain (lifecycle), starting from marketing via development and production, up to operation and disposal.
ObjectiveThe students should learn to apply methods that represent best practices for a market-driven development of complex integrated products. They should learn the "vocabulary" in order to understand the contribution of the different disciplines and to integrate them into the mechatronic product. Further, they should also learn the manifold functionalities and properties that current machines and manufacturing plants have to deal with.
ContentThe following topics will be treated within this course:
- Product types, product life cycle management
- Marketing and innovation
- Product specifications and functional modeling
- Product structures and modularization
- Mechatronic systems and development processes
- Actuators, sensors and controllers
- Safety and reliability
- Portfolio analysis and variant management
- Release- and change processes
- IT systems supporting the product life cycle (CAD, PDM, ERP, ...)
Lecture notesThe course is accomplished mixing lectures and exercises. For each lecture recommended literature will be given. Handouts will be provided. Therefore a total fee of 30 CHF is charged initially. Additional handouts will be digitally published. All handouts are in English, the course will be taught in German or in English. No script available.
151-0735-00LDynamic Behavior of Materials and Structures
Does not take place this semester.
W4 credits2V + 2UD. Mohr
AbstractLectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events.
ObjectiveStudents will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and navel engineering.
ContentTopics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures;
Lecture notesSlides of the lectures, relevant journal papers and users manuals will be provided.
LiteratureVarious books will be recommended covering the topics discussed in class
Prerequisites / NoticeCourse in continuum mechanics (mandatory), finite element method (recommended)
151-3202-00LProduct Development and Engineering Design Restricted registration - show details
Number of participants limited to 60.
W4 credits2GK. Shea, T. Stankovic
AbstractThe course introduces students to the product development process. In a team, you will explore the early phases of conceptual development and product design, from ideation and concept generation through to hands-on prototyping. This is an opportunity to gain product development experience and improve your skills in prototyping and presenting your product ideas. The project topic changes each year.
ObjectiveThe course introduces you to the product development process and methods in engineering design for: product planning, user-centered design, creating product specifications, ideation including concept generation and selection methods, material selection methods and prototyping. Further topics include product lifecycle and sustainable design as well as design for manufacture, focusing on additive manufacture. You will actively apply the process and methods learned throughout the semester in a team on a product development project including hands-on prototyping.
ContentWeekly topics accompanying the product development project include:
1 Introduction to Product Development and Engineering Design
2 Product Planning and Social-Economic-Technology (SET) Factors
3 User-Centered Design and Product Specification
4 Concept Generation and Selection Methods
5 System Design and Embodiment Design
6 Hands-On Prototyping and Prototype Planning
7 Material Selection in Engineering Design
8 Product Lifecycle and Sustainability
9 Design for Manufacture and Design for Additive Manufacture
Lecture notesavailable on Moodle
LiteratureUlrich and Eppinger, Product Design and Development, 6th Edition, McGraw Hill Education, 2016.

Cagan and Vogel, Creating Breakthrough Products: Revealing the Secrets that Drive Global Innovation, 2nd Edition, Pearson Education, 2013.
Prerequisites / NoticeAlthough the course is offered to ME (BSc and MSc) and CS (BSc and MSc) students, priority will be given to ME BSc students in the Focus Design, Mechanics, and Materials if the course is full.
151-3204-00LCoaching Innovation ProjectsW2 credits2VR. P. Haas
AbstractThe course is building up skills and experience in coaching engineering teams. To gain experience and to reflect real coaching situations, the participants of the course have the role of teaching assistance of the innovation project (151-0300-00L). In this framework the participants coach teams and professionalize the knowledge in the area product development methods.
Objective- Critical thinking and reasoned judgements
- Basic knowledge about role and mindset of a coach
- Understanding the challenges of engineering projects and design teams
- Development of personal skills to apply and train product development methods
- Knowledge and know-how about applying methods
- Reflection and exchange of experiences about personal coaching situations
- Inspiration and learning from good cases regarding organizational and team management aspects
- Decision-making under uncertainty
ContentBasic knowledge about role and mindset of a coach
- Introduction into coaching: definition & models
- Introduction into the coaching process
Knowledge and reflection about the problems in coaching an innovation project
- Knowledge about team development
- Reflection about critical phases in the innovation process for an innovation team
- Know-how about reference model for analysis critical situations
Development of personal coaching competencies, e.g. active listening, asking questions, giving feedback
- Competencies in theoretical models
- Coaching competencies: exercises and reflection
Knowledge and know-how about coaching methods
- Knowledge about basic coaching methods for technical projects/innovations projects
- Know-how about usage of methods in the coaching process
Reflection and exchange of experiences about personal coaching situations
- Self-reflection
- Exchange of experiences in the lecture group
Facilitating conflict situations
- Sample cases from former teams
- Actual cases of participants
Role of coaches between examinator and "friend"
- Facilitating decisions
- Using and applying coaches opinions and knokwledge
Lecture notesSlides, script and other documents will be distributed electronically
(access only for paticipants registered to this course).
LiteraturePlease refer to a lecture script.
Prerequisites / NoticeOnly for participants (Bachelor Students, Master Students) who are teaching assistants in the innovation project).
263-5805-00LPhysics-based Modeling for Computational Fabrication and Robotics Information W5 credits2V + 2US. Coros, M. Bächer, K. Shea
AbstractThis course covers fundamentals of physics-based modelling and numerical optimization from the perspective of computational fabrication and robotics applications.
ObjectiveStudents will learn how to represent, model and algorithmically control the behavior of complex physical systems through simulation-based methodologies. The lectures are accompanied by programming assignments (written in C++), hand-on exercises involving digital fabrication technologies, as well as a capstone project.
Contentmass-spring and FEM simulation methods; multibody systems; kinematics and dynamics; constrained and unconstrained numerical optimization; PDE-constrained optimization, forward and inverse design; shape and topology optimization; simulation, optimization, fabrication and control for compliant robots; robotic manipulation of elastically-deforming objects.
Prerequisites / NoticeExperience with C++ programming, numerical linear algebra and multivariate calculus. Some background in physics-based modeling, kinematics and dynamics is helpful, but not necessary.
Multidisciplinary Courses
The students are free to choose individually from the entire course offer of ETH Zurich, ETH Lausanne and the Universities of Zurich and St. Gallen.
» Course Catalogue of ETH Zurich
Semester Project
151-1002-00LSemester Project Mechanical Engineering Restricted registration - show details
Only for Mechanical Engineering MSc.

The subject of the Semester Project and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.
O8 credits17AProfessors
AbstractThe semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution.
ObjectiveThe semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program.
Industrial Internship
151-1090-00LIndustrial Internship
Access to the company list and request for recognition under

No registration required via myStudies.
O8 creditsexternal organisers
AbstractThe main objective of the minimum twelve-week internship is to expose Master’s students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.
ObjectiveThe aim of the Industrial Internship is to apply engineering knowledge to practical situations.
GESS Science in Perspective
» see Science in Perspective: Language Courses ETH/UZH
» see Science in Perspective: Type A: Enhancement of Reflection Capability
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-MAVT
Master's Thesis
151-1001-00LMaster's Thesis Mechanical Engineering
Students who fulfill the following criteria are allowed to begin with their Master's Thesis:
a. successful completion of the bachelor program;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. successful completion of the semester project and industrial internship;
d. achievement of 28 ECTS in the category "Core Courses".

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.
To choose a titular professor as a supervisor, please contact the D-MAVT Student Administration.
O30 credits64DProfessors
AbstractMaster's programs are concluded by the master's thesis. The thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem. The subject of the master's thesis, as well as the project plan and roadmap, are proposed by the tutor and further elaborated with the student.
ObjectiveThe thesis is aimed at enhancing the student's capability to work independently toward the solution of a theoretical or applied problem.
Course Units for Additional Admission Requirements
The courses below are only available to MSc students with additional admission requirements.
406-0173-AALLinear Algebra I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RN. Hungerbühler
AbstractLinear algebra is an indispensable tool of engineering mathematics. The course is an introduction to basic methods and fundamental concepts of linear algebra and its applications to engineering sciences.
ObjectiveAfter completion of this course, students are able to recognize linear structures and to apply adequate tools from linear algebra in order to solve corresponding problems from theory and applications. In addition, students have a basic knowledge of the software package Matlab.
ContentSystems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications.
Linear maps, kernel and image, coordinates and matrices, coordinate transformations, norm of a matrix, orthogonal matrices, eigenvalues and eigenvectors, algebraic and geometric multiplicity, eigenbasis, diagonalizable matrices, symmetric matrices, orthonormal basis, condition number, linear differential equations, Jordan decomposition, singular value decomposition, examples in MATLAB, applications.


Gilbert Strang "Introduction to linear algebra", Wellesley-Cambridge Press: Chapters 1-6, 7.1-7.3, 8.1, 8.2, 8.6

A Practical Introduction to MATLAB:

Matlab Primer:
Literature- Gilbert Strang: Introduction to linear algebra. Wellesley-Cambridge Press

- A Practical Introduction to MATLAB:

- Matlab Primer:

- K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002

- K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003
406-0353-AALAnalysis III
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-4 credits9RA. Iozzi
AbstractThe focus lies on the simplest cases of three fundamental types of partial differential equations of second order: the Laplace equation, the heat equation and the wave equation.
LiteratureReference books and notes

Main books:

Giovanni Felder: "Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure" (Download PDF: ),
Erwin Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, just chapters 11, 16.

Extra readings:

Norbert Hungerbühler: "Einführung in die partiellen Differentialgleichungen", vdf Hochschulverlag AG an der ETH Zürich,
Yehuda Pinchover, Jacob Rubinstein: "Partial Differential Equations", Cambridge University Press 2005.

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis (Download PDF)
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
  • First page Previous page Page  7  of  7     All