# Search result: Catalogue data in Autumn Semester 2018

Computational Science and Engineering Master | ||||||

GESS Science in Perspective | ||||||

» Recommended Science in Perspective (Type B) for D-MATH. | ||||||

» see Science in Perspective: Language Courses ETH/UZH | ||||||

» see Science in Perspective: Type A: Enhancement of Reflection Capability | ||||||

Master's Thesis If you wish to have recognised 402-2000-00L Scientific Works in Physics instead of 401-2000-00L Scientific Works in Mathematics (as allowed for the CSE programme), take contact with the Study Administration Office (Link) after having passed the performance assessment. | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

401-2000-00L | Scientific Works in MathematicsTarget audience: Third year Bachelor students; Master students who cannot document to have received an adequate training in working scientifically. | O | 0 credits | E. Kowalski | ||

Abstract | Introduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.) | |||||

Objective | Learn the basic standards of scientific works in mathematics. | |||||

Content | - Types of mathematical works - Publication standards in pure and applied mathematics - Data handling - Ethical issues - Citation guidelines | |||||

Lecture notes | Moodle of the Mathematics Library: Link | |||||

Prerequisites / Notice | Directive Link | |||||

401-2000-01L | Training Course "Search for Documents in Mathematics" [under revision]Details and registration for the optional MathBib training course: Link | Z | 0 credits | Speakers | ||

Abstract | Optional course "Recherchieren in der Mathematik" (held in German) by the Mathematics Library. | |||||

Objective | ||||||

402-2000-00L | Scientific Works in PhysicsTarget audience: Master students who cannot document to have received an adequate training in working scientifically. Directive Link | W | 0 credits | C. Grab | ||

Abstract | Literature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality. | |||||

Objective | Basic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity. | |||||

401-4990-01L | Master's Thesis Only students who fulfil the following criteria are permitted to commence the Master's thesis: a. successful completion of the Bachelor's programme; b. fulfilling of any additional requirements necessary to gain admission to the Master's programme; c. successful completion of 1) at least two course units in the category ‘Core courses’; 2) at least five course units, including a seminar, in the category ‘Fields of specialisation’; and 3) the semester paper. Successful participation in the course unit 401-2000-00L Scientific Works in Mathematics or 402-2000-00L Scientific Works in Physicsis is required. For more information, see Link | O | 30 credits | 57D | Supervisors | |

Abstract | The master's thesis concludes the study programme. Thesis work should prove the students' ability to independent, structured and scientific working. | |||||

Objective | Thesis work should prove the students' ability to independent, structured and scientific working. | |||||

Colloquia | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

401-5650-00L | Zurich Colloquium in Applied and Computational Mathematics | E- | 0 credits | 2K | R. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, A. Jentzen, C. Jerez Hanckes, S. Mishra, S. Sauter, C. Schwab | |

Abstract | Research colloquium | |||||

Objective | ||||||

Course Units for Additional Admission Requirements The courses below are only available for MSc students with additional admission requirements. | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0102-AAL | Fluid Dynamics IEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 6 credits | 13R | T. Rösgen | |

Abstract | An introduction to the physical and mathematical foundations of fluid dynamics is given. Topics include dimensional analysis, integral and differential conservation laws, inviscid and viscous flows, Navier-Stokes equations, boundary layers, turbulent pipe flow. Elementary solutions and examples are presented. | |||||

Objective | An introduction to the physical and mathematical principles of fluid dynamics. Fundamental terminology/principles and their application to simple problems. | |||||

Content | Phänomene, Anwendungen, Grundfragen Dimensionsanalyse und Ähnlichkeit; Kinematische Beschreibung; Erhaltungssätze (Masse, Impuls, Energie), integrale und differentielle Formulierungen; Reibungsfreie Strömungen: Euler-Gleichungen, Stromfadentheorie, Satz von Bernoulli; Reibungsbehaftete Strömungen: Navier-Stokes-Gleichungen; Grenzschichten; Turbulenz | |||||

Lecture notes | Eine erweiterte Formelsammlung zur Vorlesung wird elektronisch zur Verfügung gestellt. | |||||

Literature | Empfohlenes Buch: Fluid Mechanics, P. Kundu & I. Cohen, Elsevier | |||||

Prerequisites / Notice | Performance Assessment: session examination Allowed aids: Textbook (free selection, list of assignments), list of formulars IFD, 8 Sheets (=4 Pages) own notes, calculator | |||||

406-0353-AAL | Analysis III Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 credits | 9R | A. Iozzi | |

Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | |||||

Objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partlial differentail equations. | |||||

Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | |||||

Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics). G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis (Download PDF) | |||||

Prerequisites / Notice | Up-to-date information about this course can be found at: Link | |||||

406-0603-AAL | Stochastics (Probability and Statistics)Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 credits | 9R | M. Kalisch | |

Abstract | Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme. | |||||

Objective | The objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R". | |||||

Content | From "Statistics for research" (online) Ch 1: The Role of Statistics Ch 2: Populations, Samples, and Probability Distributions Ch 3: Binomial Distributions Ch 6: Sampling Distribution of Averages Ch 7: Normal Distributions Ch 8: Student's t Distribution Ch 9: Distributions of Two Variables From "Introductory Statistics with R (online)" Ch 1: Basics Ch 2: The R Environment Ch 3: Probability and distributions Ch 4: Descriptive statistics and tables Ch 5: One- and two-sample tests Ch 6: Regression and correlation | |||||

Literature | - "Statistics for research" by S. Dowdy et. al. (3rd edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI: 10.1002/0471477435 From within the ETH, this book is freely available online under: Link - "Introductory Statistics with R" by Peter Dalgaard; ISBN 978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1 From within the ETH, this book is freely available online under: Link | |||||

406-0663-AAL | Numerical Methods for CSEAny other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 8 credits | 17R | R. Alaifari | |

Abstract | he course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++. | |||||

Objective | * Knowledge of the fundamental algorithms in numerical mathematics * Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms * Ability to choose the appropriate numerical method for concrete problems * Ability to interpret numerical results * Ability to implement numerical algorithms afficiently | |||||

Content | 1. Direct Methods for linear systems of equations 2. Least Squares Techniques 3. Data Interpolation and Fitting 4. Filtering Algorithms 8. Approximation of Functions 9. Numerical Quadrature 10. Iterative Methods for non-linear systems of equations 11. Single Step Methods for ODEs 12. Stiff Integrators | |||||

Lecture notes | Lecture materials (PDF documents and codes) will be made available to participants. | |||||

Literature | U. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011. A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000. W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006. M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002 P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002 | |||||

Prerequisites / Notice | Solid knowledge about fundamental concepts and technques from linear algebra & calculus as taught in the first year of science and engineering curricula. The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves. | |||||

252-0232-AAL | Software DesignAny other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 6 credits | 13R | D. Gruntz | |

Abstract | The course Software Design presents and discusses design patterns regularly used to solve problems in object oriented design and object oriented programming. The presented patterns are illustrated with examples from the Java libraries and are applied in a project. | |||||

Objective | The students - know the principles of object oriented programming and can apply these. - know the most important object oriented design patterns. - can apply design patterns to solve design problems. - discover in a given design the use of design patterns. | |||||

529-0483-AAL | Statistical Physics and Computer SimulationAny other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 4 credits | 9R | M. Reiher | |

Abstract | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | |||||

Objective | Introduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results. | |||||

Content | Principles and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics. Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages. | |||||

Lecture notes | available | |||||

Literature | see "Course Schedule" | |||||

Prerequisites / Notice | additional information will be provided in the first lecture. |

- Page 5 of 5 All