Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Rechnergestützte Wissenschaften Master Information
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-1032-00LNeuromorphic Engineering II Information
Information für UZH Studierende:
Die Lerneinheit kann nur an der ETH belegt werden. Die Belegung des Moduls INI405 ist an der UZH nicht möglich.

Beachten Sie die Einschreibungstermine an der ETH für UZH Studierende: Link
W6 KP5GT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the fall semester course "Neuromorphic Engineering I".
LernzielDesign of a neuromorphic circuit for implementation with CMOS technology.
InhaltThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the autumn semester course "Neuromorphic Engineering I".

The principles of CMOS processing technology are presented. Using a set of inexpensive software tools for simulation, layout and verification, suitable for neuromorphic circuits, participants learn to simulate circuits on the transistor level and to make their layouts on the mask level. Important issues in the layout of neuromorphic circuits will be explained and illustrated with examples. In the latter part of the semester students simulate and layout a neuromorphic chip. Schematics of basic building blocks will be provided. The layout will then be fabricated and will be tested by students during the following fall semester.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; software documentation.
Voraussetzungen / BesonderesPrerequisites: Neuromorphic Engineering I strongly recommended
227-1034-00LComputational Vision (University of Zurich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI402

Mind the enrolment deadlines at UZH:
Link
W6 KP2V + 1UD. Kiper, K. A. Martin
KurzbeschreibungThis course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision.
LernzielThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
InhaltThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
LiteraturBooks: (recommended references, not required)
1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997.
2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995.
227-1046-00LComputer Simulations of Sensory Systems Information W3 KP2V + 1UT. Haslwanter
KurzbeschreibungThis course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python (or Matlab). The simulations will be such that their output could be used as input for actual neuro-sensory prostheses.
LernzielOur sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system.
The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses.
In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required.
InhaltThe following topics will be covered:
• Introduction into the signal processing in nerve cells.
• Introduction into Python.
• Simplified simulation of nerve cells (Hodgkins-Huxley model).
• Description of the auditory system, including the application of Fourier transforms on recorded sounds.
• Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing.
• Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems).
SkriptFor each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under Link
LiteraturOpen source information is available as wikibook Link

For good overviews I recommend:
• L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702].
This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems.

• Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth
ISBN 0071390111 / 9780071390118
The standard textbook on neuroscience.

• P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009.
Compactly written, it provides a short introduction to MATLAB, as well as a very good overview of MATLAB’s functionality, focusing on applications in different areas of neuroscience.

• G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)]
A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception.
Voraussetzungen / BesonderesSince I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week).
636-0006-00LComputational Systems Biology: Deterministic Approaches Belegung eingeschränkt - Details anzeigen W4 KP3GJ. Stelling, D. Iber
KurzbeschreibungThe course introduces computat. methods for systems biology under ‘real-world’ conditions of limiting biological knowledge, uncertain model scopes and predictions, and spatial effects. Focus is on systems identification for mechanistic, deterministic models and the corresponding numerical approaches. Topics include uncertainty evaluation, experim. design, and numerical methods for spatial models
LernzielThe aim of the course is to provide students with mathematical and computational methods for the analysis of biological systems in a ‘real world’ setting. This implies (i) incomplete knowledge of components, interactions, and their quantitative features in cellular networks, (ii) resulting uncertainties in model predictions and iterations between models and experiments, and (iii) spatial effects. All these factors make direct representations of biological mechanisms in mechanistic, deterministic mathematical models challenging. Based on general concepts of systems identification and on corresponding numerical methods, the course aims at providing an in-depth understanding of computational approaches that enable the analysis of mechanisms of biological network operation in detail, using iterations between experimental and theoretical systems analysis.
InhaltLecture topics: (1) Mechanistic mathematical models and systems identification challenges; (2-4) Structural models and data integration; (5-8) Identification and experimental design for ODE models; (9-10) Uncertainty quantification; (11-13) Numerical methods for partial differential equation (PDE) models to describe spatial effects.
SkriptCourse material will be made available at: Link
LiteraturBackground literature will be available on-line at the start of the course.
Voraussetzungen / BesonderesFor this advanced course, participants are expected to have a solid background in the mathematical modelling of biological systems, as conveyed by the combination of the following two courses in the MSc Computational Biology and Bioinformatics: ‘Computational systems biology’ and ‘Spatio-temporal modeling in biology’.
636-0016-00LComputational Systems Biology: Stochastic Approaches Information W4 KP3GM. H. Khammash, A. Gupta
KurzbeschreibungThis course is concerned with the development of computational methods for modeling, simulation, and analysis of stochasticity in living cells. Using these tools, the course explores the richness of stochastic phenomena, how it arises from the interactions of dynamics and noise, and its biological implications.
LernzielTo understand the origins and implications of stochastic noise in living cells, and to learn the computational tools for the modeling, simulation, analysis, and identification of stochastic biochemical reaction networks.
InhaltThe cellular environment is abuzz with noise. A key source of this noise is the randomness that characterizes the motion of cellular constituents at the molecular level. Cellular noise not only results in random fluctuations (over time) within individual cells, but it is also a main source of phenotypic variability among clonal cell populations.

Review of basic probability and stochastic processes; Introduction to stochastic gene expression; deterministic vs. stochastic models; the stochastic chemical kinetics framework; a rigorous derivation of the chemical master equation; moment computations; linear vs. nonlinear propensities; linear noise approximations; Monte Carlo simulations; Gillespie's Stochastic Simulation Algorithm (SSA) and variants; direct methods for the solution of the Chemical Master Equation; moment closure methods; intrinsic and extrinsic noise in gene expression; parameter identification from noise; propagation of noise in cell networks; noise suppression in cells; the role of feedback; exploiting noise; bimodality and stochastic switches.
LiteraturLiterature will be distributed during the course as needed.
Voraussetzungen / BesonderesStudents are expected to have completed the course `Mathematical modeling for systems biology (BSc Biotechnology) or `Computational systems biology (MSc Computational biology and bioinformatics). Concurrent enrollment in `Computational Systems Biology: Deterministic Approaches is recommended.
701-0412-00LKlimasystemeW3 KP2GR. Knutti, I. Medhaug
KurzbeschreibungDie wichtigsten physikalischen Komponenten des Klimasystems und deren Wechselwirkungen werden eingeführt. Vor dem Hintergrund der Klimageschichte - und variabilität werden die Mechanismen des anthropogenen Klimawandels analysiert. Absolvierende des Kurses sind in der Lage, einfache Problemstellungen aus dem Bereich der Klimasysteme zu identifizieren und erläutern.
LernzielStudierende können:
- die wichtigsten physikalischen Komponenten des goblaben Klimasystems beschreiben und ihre Wechselwirkungen skizzieren.
- die Mechanismen des anthropogenen Klimawandels erklären.
einfache Problemstellungen aus dem Bereich der Klimasysteme identifizieren und erläutern.
SkriptKopien der Folien werden elektronisch zur Verfuegung gestellt.
LiteraturEine vollständige Literaturliste wird abgegeben. Insbesondere empfohlen sind:
- Hartmann, D., 2016: Global Physical Climatology. Academic Press, London, 485 pp.
- Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. American Institute of Physics, New York, 520 pp.
Voraussetzungen / BesonderesDozierende: Reto Knutti, mehrere Vorträge zu Spezialthemen von anderen Dozenten
Unterrichtssprache: deutsch
Sprache der Folien: englisch
327-2201-00LTransport Phenomena II Information W5 KP4GH. C. Öttinger
KurzbeschreibungNumerical methods for real-world "Transport Phenomena"; atomistic understanding of transport properties based on kinetic theory and mesoscopic models; fundamentals, applications, and simulations
LernzielThe teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: kinetic theory, mesoscopic models, ...
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions
(4) Knowledge of a number of applications
(5) Flavor of numerical techniques: finite elements, lattice Boltzmann, ...
InhaltThermodynamics of Interfaces
Interfacial Balance Equations
Interfacial Force-Flux Relations
Polymer Processing
Transport Around a Sphere
Refreshing Topics in Equilibrium Statistical Mechanics
Kinetic Theory of Gases
Kinetic Theory of Polymeric Liquids
Transport in Biological Systems
Dynamic Light Scattering
SkriptA detailed manuscript is available; this manuscript will be developed into a book entitled "A Modern Course in Transport Phenomena" by David C. Venerus and Hans Christian Öttinger
Literatur1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001)
2. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, 2nd Ed. (Dover, 1984)
3. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287
4. R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell (Garland, 2008)
5. G. A. Truskey, F. Yuan, and D. F. Katz, Transport Phenomena in Biological Systems (Prentice Hall, 2004)
Voraussetzungen / BesonderesComplex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Statistical thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms; Gibbs' phase rule; ergodicity; partition functions; Einstein's fluctuation theory). Linear irreversible thermodynamics (forces and fluxes; Fourier's, Newton's and Fick's laws for fluxes). Hydrodynamics (local equilibrium; balance equations for mass, momentum, energy and entropy). Programming and simulation techniques (Matlab, Monte Carlo simulations).
» siehe auch Angebot im Abschnitt Vertiefungsgebiete
Fallstudien
NummerTitelTypECTSUmfangDozierende
401-3667-18LCase Studies Seminar (Spring Semester 2018) Information W3 KP2SV. C. Gradinaru, R. Hiptmair, K. Nipp, M. Reiher
KurzbeschreibungIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list.
Lernziel
InhaltIn the CSE Case Studies Seminar invited speakers from ETH, from other universities as well as from industry give a talk on an applied topic. Beside of attending the scientific talks students are asked to give short presentations (10 minutes) on a published paper out of a list (containing articles from, e.g., Nature, Science, Scientific American, etc.).
Semesterarbeit
Es gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
NummerTitelTypECTSUmfangDozierende
401-3740-01LSemesterarbeit Belegung eingeschränkt - Details anzeigen
Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter Link
Nur für Semesterarbeiten zugelassene Betreuer müssen durch das Studiensekretariat zugeordnet werden.
W8 KP11ABetreuer/innen
KurzbeschreibungSemesterarbeiten dienen der Vertiefung in einem spezifischen Fachbereich; die Themen werden den Studierenden zur individuellen Auswahl angeboten. Semesterarbeiten sollen die Fähigkeit der Studierenden zu selbständiger mathematischer Tätigkeit und zur schriftlichen Darstellung mathematischer Ergebnisse fördern.
Lernziel
Voraussetzungen / BesonderesEs gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
401-3740-02LSemesterarbeit Belegung eingeschränkt - Details anzeigen
Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter Link
Nur für Semesterarbeiten zugelassene Betreuer müssen durch das Studiensekretariat zugeordnet werden.
W8 KP11ABetreuer/innen
KurzbeschreibungSemesterarbeiten dienen der Vertiefung in einem spezifischen Fachbereich; die Themen werden den Studierenden zur individuellen Auswahl angeboten. Semesterarbeiten sollen die Fähigkeit der Studierenden zu selbständiger mathematischer Tätigkeit und zur schriftlichen Darstellung mathematischer Ergebnisse fördern.
Lernziel
Voraussetzungen / BesonderesEs gibt mehrere Lerneinheiten "Semesterarbeit", die alle gleichwertig sind. Wenn Sie im Lauf Ihres Studiums mehrere Semesterarbeiten schreiben, wählen Sie jeweils verschiedene Nummern aus, um wieder Kreditpunkte erhalten zu können.
GESS Wissenschaft im Kontext
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-MATH
» siehe Studiengang Wissenschaft im Kontext: Sprachkurse ETH/UZH
» siehe Studiengang Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
Master-Arbeit
Wenn Sie anstelle von 401-2000-00L Scientific Works in Mathematics die Lerneinheit 402-2000-00L Scientific Works in Physics anrechnen lassen möchten (dies ist erlaubt im Studiengang Rechnergestützte Wissenschaften), so wenden Sie sich nach dem Verfügen des Resultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.
O0 KPE. Kowalski
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
SkriptMoodle of the Mathematics Library: Link
Voraussetzungen / BesonderesThis course is completed by the optional course "Recherchieren in der Mathematik" (held in German) by the Mathematics Library. For more details see: Link

Weisung Link
401-2000-01LRecherchieren in der Mathematik
Für Details und zur Registrierung für den freiwilligen MathBib-Schulungskurs: Link
Z0 KPReferent/innen
KurzbeschreibungFreiwilliger Kurs "Recherchieren in der Mathematik" angeboten von der Mathematikbibliothek.
Lernziel
402-2000-00LScientific Works in Physics
Zielpublikum:
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.

Weisung Link
W0 KPC. Grab
KurzbeschreibungLiterature Review: ETH-Library, Journals in Physics, Google Scholar; Thesis Structure: The IMRAD Model; Document Processing: LaTeX and BibTeX, Mathematical Writing, AVETH Survival Guide; ETH Guidelines for Integrity; Authorship Guidelines; ETH Citation Etiquettes; Declaration of Originality.
LernzielBasic standards for scientific works in physics: How to write a Master Thesis. What to know about research integrity.
401-4990-01LMaster's Thesis Belegung eingeschränkt - Details anzeigen
Zur Master-Arbeit wird nur zugelassen, wer:
a. das Bachelor-Studium erfolgreich abgeschlossen hat;
b. allfällige Auflagen für die Zulassung zum Master-Studiengang erfüllt hat; und
c. im Master-Studium mindestens die folgenden Studienleistungen erbracht hat:
1) in der Kategorie "Kernfächer" müssen mindestens zwei Lerneinheiten bestanden sein;
2) in der Kategorie "Vertiefungsgebiete" müssen mindestens fünf Lerneinheiten, davon ein Seminar, bestanden sein; und
3) die Semesterarbeit muss bestanden sein.

Voraussetzung: erfolgreicher Abschluss der Lerneinheit 401-2000-00L Scientific Works in Mathematics oder 402-2000-00L Scientific Works in Physics
Weitere Angaben unter Link
O30 KP57DBetreuer/innen
KurzbeschreibungDie Master-Arbeit bildet den Abschluss des Studiengangs. Die Studierenden sollen mit der Master-Arbeit ihre Fähigkeit zu selbständiger, strukturierter und wissenschaftlicher Tätigkeit unter Beweis stellen.
LernzielDie Studierenden sollen mit der Master-Arbeit, die den Abschluss des Studiengangs bildet, ihre Fähigkeit zu selbständiger, strukturierter und wissenschaftlicher Tätigkeit unter Beweis stellen.
Kolloquien
NummerTitelTypECTSUmfangDozierende
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information E-0 KP1KR. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, A. Jentzen, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungForschungskolloquium
Lernziel
Auflagen-Lerneinheiten
Das untenstehende Lehrangebot gilt nur für MSc Studierende mit Zulassungsauflagen.
NummerTitelTypECTSUmfangDozierende
151-0102-AALFluid Dynamics I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
E-6 KP13RT. Rösgen
KurzbeschreibungAn introduction to the physical and mathematical foundations of fluid dynamics is given.
Topics include dimensional analysis, integral and differential conservation laws, inviscid and viscous flows, Navier-Stokes equations, boundary layers, turbulent pipe flow. Elementary solutions and examples are presented.
LernzielAn introduction to the physical and mathematical principles of fluid dynamics. Fundamental terminology/principles and their application to simple problems.
InhaltPhänomene, Anwendungen, Grundfragen
Dimensionsanalyse und Ähnlichkeit; Kinematische Beschreibung; Erhaltungssätze (Masse, Impuls, Energie), integrale und differentielle Formulierungen; Reibungsfreie Strömungen: Euler-Gleichungen, Stromfadentheorie, Satz von Bernoulli; Reibungsbehaftete Strömungen: Navier-Stokes-Gleichungen; Grenzschichten; Turbulenz
SkriptEine erweiterte Formelsammlung zur Vorlesung wird elektronisch zur Verfügung gestellt.
LiteraturEmpfohlenes Buch: Fluid Mechanics, P. Kundu & I. Cohen, Elsevier
Voraussetzungen / BesonderesPerformance Assessment: session examination
Allowed aids:
Textbook (free selection, list of assignments), list of formulars IFD, 8 Sheets (=4 Pages) own notes, calculator
  • Erste Seite Vorherige Seite Seite  5  von  6 Nächste Seite Letzte Seite     Alle