Suchergebnis: Katalogdaten im Herbstsemester 2020
Elektrotechnik und Informationstechnologie Bachelor ![]() | ||||||
![]() Kurswahl kann frei zusammengestellt werden, eine Liste von Empfehlungen findet sich unter Link | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0103-00L | Regelsysteme ![]() | W | 6 KP | 2V + 2U | F. Dörfler | |
Kurzbeschreibung | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||
Lernziel | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||
Inhalt | Process automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation. | |||||
Literatur | K. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010. R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007. G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010. J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014. J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014. | |||||
Voraussetzungen / Besonderes | Prerequisites: Signal and Systems Theory II. MATLAB is used for system analysis and simulation. | |||||
227-0110-00L | Elektromagnetische Wellen für Fortgeschrittene | W | 6 KP | 2V + 2U | P. Leuchtmann, U. Koch | |
Kurzbeschreibung | Die Vorlesung gibt einen vertieften Einblick in das Verhalten elektromagnetischer Wellen in linearen Materialien, inklusive negativem Brechungsindex oder Metamaterialien. | |||||
Lernziel | Sie verstehen das Verhalten elektromagnetischer Wellen sowohl im homogenen Raum als auch in ausgewählten Strukturen (Oberflächen, geschichtete Medien, zylindrische Strukturen, Wellenleiter) und wissen auch über zeitharmonische Materialmodelle in Plasmonik Bescheid. | |||||
Inhalt | Beschreibung von zeitharmonischen Feldern; die Rolle des Materials in den Maxwell'schen Gleichungen; Energietransport- und -absorbierungsmechanismen; Elektromagnetische Wellen im homogenen Raum: gewöhnliche und evaneszente Ebene Wellen, Zylinderwellen, Kugelwellen, "Complex origin"-Wellen und -Strahlen; Reflexion an beschichteten Grenzflächen; Oberflächen-Wellen; Wellen in geschichteten Strukturen; Mechanismus der Führung elektromagnetischer Wellen; TEM-Wellen; Hohlleiter und dielektrische Wellenleiter. | |||||
Skript | Ein englischsprachiges Skript mit animierten Darstellungen kann heruntergeladen werden, ebenso die in der Vorlesung gezeigten Folien. | |||||
Literatur | Das Skript enthält eine Literaturliste. | |||||
Voraussetzungen / Besonderes | Die Vorlesung wird auf Deutsch gehalten, das Skript und die Präsentationen sind auf Englisch. | |||||
227-0112-00L | High-Speed Signal Propagation ![]() Findet dieses Semester nicht statt. | W | 6 KP | 2V + 2U | C. Bolognesi | |
Kurzbeschreibung | Verständnis der Hochgeschwindigkeits-Signalausbreitung in Mikrowellenkabel, integr. Mikrowellenschaltungen und Leiterplatten. Da Sytemtaktfrequenzen stets in höhere GHz Bereiche vordringen, ist es notwendig die Hochgeschwindigkeits-Signalausbreitung zu verstehen, um Signalintegrität zu gewährleisten. Der Kurs richtet sich an Interessierte an analogen/digitalen Hochgeschwindigkeitssystemen. | |||||
Lernziel | Verständnis der Hochgeschwindigkeits-Signalausbreitung in Verbindungsleitern, Mikrowellenkabel und integrierten Übertragungsleitungen wie zum Beispiel in integrierten Mikrowellenschaltungen und/oder Leiterplatten. Da Systemtaktfrequenzen kontinuierlich in höhere GHz Bereiche vordringen, entwickelt sich das dringende Bedürfnis die Hochgeschwindigkeits-Signalausbreitung zu verstehen um nach wie vor eine hohe Signalintegrität zu gewährleisten, insbesondere angesichts Phänomenen wie der Intersymbol-Interferenz (ISI) und des Übersprechens. Konzepte wie Streuparameter (oder S-Parameter) übernehmen eine Schlüsselrolle in der Charakterisierung von Netzwerken über grosse Bandbreiten. Bei hohen Frequenzen werden alle Strukturen effektiv zu "Übertragungsleitungen". Ohne besondere Vorsicht ist es sehr wahrscheinlich, dass eine schlecht entworfene Übertragungsleitung zum Versagen des gesamten entworfenen Systems führt. Filter werden ebenfalls behandelt, da sich herausstellt, dass einige der Probleme von verlustbehafteten Übertragungskanälen (Leitungen, Kabel, etc.) durch adäquates filtern korrigiert werden können. Ein Prozess der "Entzerrung" genannt wird. | |||||
Inhalt | Leitungsgleichungen der TEM-Leitung (Telegraphengleichungen). Beschreibung elektrischer Grössen auf der TEM Leitung; Reflexion im Zeit- und Frequenzbereich, Smith-Diagramm. Verhalten schwach bedämpfter Leitungen. Einfluss des Skineffekts auf Dämpfung und Impulsverzerrung. Leitungsersatzschaltungen. Gruppenlaufzeit und Dispersion. Eigenschaften gekoppelter Leitungen. Streuparameter. Butterworth-, Tschebyscheff- und Besselfilter: Einführung zum Filterentwurf mit Filterprototypen (Tiefpass, Hochpass, Bandpass, Bandsperre). Einfache aktive Filter. | |||||
Skript | Skript: Leitungen und Filter (In deutscher Sprache). | |||||
Voraussetzungen / Besonderes | Die Uebungen werden auf Englisch gehalten. | |||||
227-0113-00L | Leistungselektronik ![]() | W | 6 KP | 4G | J. W. Kolar | |
Kurzbeschreibung | Verständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit. | |||||
Lernziel | Verständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit. | |||||
Inhalt | Grundstruktur leistungselektronischer Systeme, Beispiele. DC/DC-Konverter, Potentialtrennung. Regelungstechnische Modellierung von DC/DC-Konvertern, State-Space-Averaging, PWM-Switch-Model. Leistungshalbleiter, Nichtidealitäten, Kühlung. Magnetische Bauelemente, Skin- und Proximity- Effekt, Dimensionierung. EMV. Einphasen- Diodenbrücke mit kapazitiver Glättung, Netzrückwirkungen, Leistungsfaktorkorrektur. Selbstgeführte Einphasen- u. Dreiphasen-Brückenschaltung mit eingeprägter Ausgangsspannung, Modulation, Raumzeigerbegriff. Netzgeführte Einphasen-Brückenschaltung, Kommutierung, Wechselrichterbetrieb, WR-Kippen. Netzgeführte Dreiphasen-Brückenschaltung, ungesteuert und gesteuert/kapazitive und induktive Glättung. Parallelschaltung netzgeführter Stromrichter, Saugdrosselschaltung. Gegenparallelschaltung netzgeführter Dreiphasen-Brückenschaltungen, Vierquadranten-Gleichstrommaschinenantrieb. Resonanz-Thyristorstromrichter, u-Zi-Diagramm. | |||||
Skript | Skript und Simulationsprogramm für interaktives Lernen und Visualisierung, Uebungen mit Musterlösungen | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundkenntnisse der Elektrotechnik und Signaltheorie. | |||||
227-0116-00L | VLSI I: From Architectures to VLSI Circuits and FPGAs ![]() | W | 6 KP | 5G | F. K. Gürkaynak, L. Benini | |
Kurzbeschreibung | This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits. | |||||
Lernziel | Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools. | |||||
Inhalt | This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include: - Overview on design methodologies and fabrication depths. - Levels of abstraction for circuit modeling. - Organization and configuration of commercial field-programmable components. - FPGA design flows. - Dedicated and general purpose architectures compared. - How to obtain an architecture for a given processing algorithm. - Meeting throughput, area, and power goals by way of architectural transformations. - Hardware Description Languages (HDL) and the underlying concepts. - SystemVerilog - Register Transfer Level (RTL) synthesis and its limitations. - Building blocks of digital VLSI circuits. - Functional verification techniques and their limitations. - Modular and largely reusable testbenches. - Assertion-based verification. - Synchronous versus asynchronous circuits. - The case for synchronous circuits. - Periodic events and the Anceau diagram. - Case studies, ASICs compared to microprocessors, DSPs, and FPGAs. During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout. | |||||
Skript | Textbook and all further documents in English. | |||||
Literatur | H. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303. | |||||
Voraussetzungen / Besonderes | Prerequisites: Basics of digital circuits. Examination: In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German. Further details: https://iis-students.ee.ethz.ch/lectures/vlsi-i/ | |||||
227-0121-00L | Kommunikationssysteme ![]() | W | 6 KP | 2V + 2U | A. Wittneben | |
Kurzbeschreibung | Informationstheorie, Signalraumanalyse, Basisbandübertragung, Passbandübertragung, Systembeispiel und Kanal, Sicherungsschicht, MAC, Beispiele Layer 2, Layer 3, Internet | |||||
Lernziel | Ziel der Vorlesung ist die Einführung der wichtigsten Konzepte und Verfahren, die in modernen digitalen Kommunikationssystemen Anwendung finden, sowie eine Übersicht über bestehende und zukünftige Systeme. | |||||
Inhalt | Es werden die untersten drei Schichten des OSI-Referenzmodells behandelt: die Bitübertragungsschicht, die Sicherungsschicht mit dem Zugriff auf das Übertragungsmedium und die Vermittlung. Die wichtigsten Begriffe der Informationstheorie werden eingeführt. Anschliessend konzentrieren sich die Betrachtungen auf die Verfahren der Punkt-zu-Punkt-Übertragung, welche sich mittels der Signalraumdarstellung elegant und kohärent behandeln lassen. Den Methoden der Fehlererkennung und –korrektur, sowie Protokollen für die erneute Übermittlung gestörter Daten wird Rechnung getragen. Auch der Vielfachzugriff bei geteiltem Übertragungsmedium wird diskutiert. Den Abschluss bilden Algorithmen für das Routing in Kommunikationsnetzen und der Flusssteuerung. Die Anwendung der grundlegenden Verfahren wird ausführlich anhand von bestehenden und zukünftigen drahtlosen und drahtgebundenen Systemen erläutert. | |||||
Skript | Vorlesungsfolien | |||||
Literatur | [1] Simon Haykin, Communication Systems, 4. Auflage, John Wiley & Sons, 2001 [2] Andrew S. Tanenbaum, Computernetzwerke, 3. Auflage, Pearson Studium, 2003 [3] M. Bossert und M. Breitbach, Digitale Netze, 1. Auflage, Teubner, 1999 | |||||
227-0124-00L | Embedded Systems ![]() | W | 6 KP | 4G | L. Thiele | |
Kurzbeschreibung | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions. | |||||
Lernziel | Understanding specific requirements and problems arising in embedded system applications. Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis. Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment. | |||||
Inhalt | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment. Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis. More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html . | |||||
Skript | The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html . | |||||
Literatur | P. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018. G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011. Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017. M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016. | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic knowledge in computer architectures and programming. | |||||
227-0145-00L | Solid State Electronics and Optics ![]() | W | 6 KP | 4G | N. Yazdani, V. Wood | |
Kurzbeschreibung | "Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids. | |||||
Lernziel | Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials. | |||||
Voraussetzungen / Besonderes | Recommended background: Undergraduate physics, mathematics, semiconductor devices | |||||
227-0166-00L | Analog Integrated Circuits ![]() | W | 6 KP | 2V + 2U | T. Jang | |
Kurzbeschreibung | This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. | |||||
Lernziel | Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course. | |||||
Inhalt | Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements. | |||||
Skript | Handouts of presented slides. No script but an accompanying textbook is recommended. | |||||
Literatur | Behzad Razavi, Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Engineering) 1st or 2nd edition, McGraw-Hill Education | |||||
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0393-10L | Bioelectronics and Biosensors ![]() | W | 6 KP | 2V + 2U | J. Vörös, M. F. Yanik, T. Zambelli | |
Kurzbeschreibung | The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion. | |||||
Lernziel | During this course the students will: - learn the basic concepts in biosensing and bioelectronics - be able to solve typical problems in biosensing and bioelectronics - learn about the remaining challenges in this field | |||||
Inhalt | L1. Bioelectronics history, its applications and overview of the field - Volta and Galvani dispute - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices - Fundamentals of biosensing - Glucometer and ELISA L2. Fundamentals of quantum and classical noise in measuring biological signals L3. Biomeasurement techniques with photons L4. Acoustics sensors - Differential equation for quartz crystal resonance - Acoustic sensors and their applications L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes L6. Optical biosensors - Differential equation for optical waveguides - Optical sensors and their applications - Plasmonic sensing L7. Basic notions of molecular adsorption and electron transfer - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands - Electron transfer: Marcus theory, Gerischer theory L8. Potentiometric sensors - Fundamentals of the electrochemical cell at equilibrium (Nernst equation) - Principles of operation of ion-selective electrodes L9. Amperometric sensors and bioelectric potentials - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current - Principles of operation of amperometric sensors - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation) L10. Channels, amplification, signal gating, and patch clamp Y4 L11. Action potentials and impulse propagation L12. Functional electric stimulation and recording - MEA and CMOS based recording - Applying potential in liquid - simulation of fields and relevance to electric stimulation L13. Neural networks memory and learning | |||||
Literatur | Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition) | |||||
Voraussetzungen / Besonderes | The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, Michaelis-Menten equation, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.). | |||||
![]() Es müssen mindestens 18 KP (nach Studienreglement 2016), bzw. 15 KP (nach Studienreglement 2018) aus der Kategorie "Praktika, Projekte, Seminare" erworben werden. | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0095-10L | Allgemeines Fachpraktikum I ![]() Nur für BSc Elektrotechnik und Informationstechnologie. Einschreibung über das Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses) | W | 2 KP | 2P | Professor/innen | |
Kurzbeschreibung | Im Fachpraktikum wird der Lehrstoff der ersten vier Semester und des dritten Studienjahres im Labor erprobt und gefestigt. Darüber hinaus besteht die Mögllichkeit, sich in so genannten Softwarekursen spezifische Kenntnisse von Programmpaketen anzueignen (MATLAB etc.). | |||||
Lernziel | Praktische Anwendung der im Grundstudium erworbenen Kenntnisse. | |||||
Voraussetzungen / Besonderes | Einschreibung über das Online-Tool, Link | |||||
227-0096-10L | Allgemeines Fachpraktikum II ![]() Nur für BSc Elektrotechnik und Informationstechnologie. Einschreibung über das Online-Tool (EE-Website: Studies -> Bachelor Program -> Third Year -> Laboratory Courses) | W | 4 KP | 4P | Professor/innen | |
Kurzbeschreibung | Im Fachpraktikum wird der Lehrstoff der ersten vier Semester und des dritten Studienjahres im Labor erprobt und gefestigt. Darüber hinaus besteht die Mögllichkeit, sich in so genannten Softwarekursen spezifische Kenntnisse von Programmpaketen anzueignen (MATLAB etc.). | |||||
Lernziel | Praktische Anwendung der im Grundstudium erworbenen Kenntnisse. | |||||
Voraussetzungen / Besonderes | Einschreibung über das Online-Tool, Link | |||||
![]() ![]() Ab HS 2020 werden Projekte & Seminare (P&S) als einzelne Lehrveranstaltungen angeboten. Die Belegung ist ausschliesslich für Studierende im BSc Elektrotechnik und Informationstechnologie ab Freitag vor Semesterbeginn möglich. Plätze werden über das P&S-Bewerbungstool (https://psapp.ee.ethz.ch/) zugeteilt. Bitte belegen Sie nur P&S für die Sie sich über das Tool bewerben. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0085-01L | Projekte & Seminare: Amateurfunk-Kurs ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 1.5 KP | 1P | J. Leuthold | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Der Amateurfunk ermöglicht es, drahtlos über weite Distanzen zu kommunizieren. Doch darf eine Amateurfunk-Station nicht ohne Weiteres betrieben werden. Voraussetzung ist das Ablegen der Amateurfunkprüfung HB3 oder HB9 beim BAKOM. In diesem Kurs werden wir einen Überblick über die wichtigsten Themengebiete des Amateurfunks bieten. Im praktischen Teil werdet ihr unter anderem die Gelegenheit haben, das Funkgerät selbst in die Hand zu nehmen. In einem Portabel-Ausflug (nicht testatpflichtig) werden wir zudem draussen eine mobile Funkstation aufbauen und bedienen. Nach dem Kurs habt ihr die Möglichkeit, die HB9-Prüfung abzulegen. Mit der Prüfung in der Tasche könnt ihr dann auch die Funkbude des AMIV auf dem ETZ-Dach verwenden oder auch eure eigene Anlage aufbauen und betreiben. Voraussetzung für das Testat ist eine aktive Teilnahme am Kurs, nicht das Bestehen der BAKOM-Prüfung. Eine erfolgreiche Funkverbindung zu einer anderen Station ist ebenfalls Teil der Testatbedingung. Das Lernmaterial wird in der ersten Kursstunde ausgegeben. | |||||
227-0085-02L | Projekte & Seminare: Game Development with Unity ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 3 KP | 3P | L. Benini | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Game Development is a big field and is constantly growing. A powerful tool to create cross-platform games is Unity. Unity is a cross-platform real-time game engine that uses C# as its programming language (very similar to Java). This P&S is a great chance for gaining practical experience, creating something from scratch and establishing a supporting community. Therefore, if you are eager to improve your coding skills as well as bring them to life by applying them to game development, this is the right P&S for you! | |||||
227-0085-03L | Projekte & Seminare: COMSOL Design Tool – Design of Optical Components ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 3 KP | 3P | J. Leuthold | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Simulation tools are becoming an essential accessory for scientists and engineers for the development of new devices and study of physical phenomena. More and more disciplines rely on accurate simulation tools to get insight and also to accurately design novel devices. COMSOL is a powerful multiphysics simulation tool. It is used for a wide range of fields, including electromagnetics, semiconductors, thermodynamics and mechanics. In this P&S we will focus on the rapidly growing field of integrated photonics. During hands-on exercises, you will learn how to accurately model and simulate various optical devices, which enables high-speed optical communication. At the end of the course, students will gain practical experience in simulating photonic components by picking a small project in which certain photonic devices will be optimized to achieve required specifications. These simulated devices find applications in Photonic Integrated Circuits (PICs) on chip-scale. Course website: https://blogs.ethz.ch/ps_comsol | |||||
Voraussetzungen / Besonderes | No previous knowledge of simulation tools is required. A basic understanding of electromagnetics is helpful but not mandatory. The course will be taught in English. | |||||
227-0085-04L | Projekte & Seminare: Microcontrollers for Sensors and Internet of Things ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 4 KP | 4P | L. Benini | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Ultra Low Power Microcontroller (MCU) – Firmware Programming and Sensors Interfacing using an Arm Cortex-M (STM32) Microcontroller Microprocessors are used to execute big and generic applications, while microcontrollers are low cost and low power embedded chips with program memory and data memory built onto the system which are used to execute simple tasks within one specific application (i.e. sensor devices, wearable systems, and IoT devices). Microcontrollers demand very precise and resource-saving programming, therefore it is necessary to know the processor core, and particular importance has the investigation of the microcontroller's hardware components (ADC, clocks, serial communication, timers, interrupts, etc.). The STM32 from STMicroelectronics has gained in popularity in recent years due to its low power and ease of use. The goal of this course is the development of understanding the internal processes in the microcontroller chip from TI. This will enable you to conduct high-level-firmware-programming of microcontrollers, to learn about the STM32 MCU features, benefits, and programming and how they can be connected with sensors, acquire the data, processing them and send the information to other devices. The course will also include an introductive lecture on machine learning and artificial intelligence on the embedded system and in particular microcontrollers. The C language will be used to program the microcontroller. The course will be taught in English. | |||||
227-0085-05L | Projekte & Seminare: Fast Signal Acquisition and Processing for Quantum Experiments using FPGA ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 2 KP | 2P | S. Kozerke | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | FPGAs are used in wide range of applications including video processing, machine learning, cryptography and radar signal processing, thanks to their flexibility and massive parallel processing power. Recently FPGAs have become important in quantum signal processing where high amount of data should be analyzed in a short time to use quantum setups most efficiently. In addition, FPGAs are used for quantum state detection and feedback generation, which have to be performed in the scale of hundreds of nanoseconds. The goal of this course is to understand the FPGA based signal processing for superconducting circuits based quantum experiments. The course participants will learn the implementation techniques of the modules for fast quantum signal acquisition and processing, the electronics supporting quantum experiments, and FPGA programming. You will implement quantum signal processing and quantum state detection modules using Xilinx FPGA, Verilog HDL, and high speed ADC. The course will be taught in English. No prior knowledge in quantum physics or FPGA is required, still a good knowledge in any coding language (for example C or Java) is required. | |||||
227-0085-06L | Projekte & Seminare: Neural Network on Low Power FPGA: A Practical Approach ![]() Findet dieses Semester nicht statt. Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 2 KP | 2P | L. Benini | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Artifical Intelligence and in particular neural networks are inspired by biological systems, such as the human brain. Through the combination of powerful computing resources and novel architectures for neurons, neural networks have achieved state-of-the-art results in many domains such as computer vision. FPGAs are one of the most powerful platform to implement neural networks as they can handle different algorithms in computing, logic, and memory resources in the same device. Faster performance comparing to competitive implementations as the user can hardcore operations into the hardware. This course will give to the student the basis of Machine Learning to understand how they work and how they can be trained and giving hand-on experiences with the training tools such as Keras. Moreover the course will focus in deploy algorithms in low power FPGA such as the Lattice sensAI platform to have energy efficient running algorithms. The course will provide to the students the tools and know-how to implement neural netwok on an FPGA, and the student will challenge theirself in a 5 weeks piratical project that they will present at the end of the course. Experience in FPGA programming is desirable but not mandatory. The course will be taught in English. | |||||
227-0085-07L | Projekte & Seminare: Deep Learning for Smartphone Apps (DLSA) ![]() Nur für Elektrotechnik und Informationstechnologie BSc. Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar. | W | 3 KP | 3P | L. Van Gool | |
Kurzbeschreibung | Der Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden. | |||||
Lernziel | Deep Learning with Smartphone Sensors – Programming Android Phones – Neural Networks – Keras/TensorFlow -- Projects on Smartphones. Latest smartphone generations are equipped with computational capabilities (CPU, GPU, NPU, DSP) matching common PCs from a decade ago. Moreover, smartphones have several sensors that can acquire many useful information beyond audio and visual data, for instance where we are, what we are doing, with whom we are together, what is our body constitution, what are our needs. Based on this information our smartphone offers us the appropriate computational power to process them in loco without sending the sensor data to the cloud. This course focuses on giving the bases of machine (deep) learning and embedded systems. Students will learn the tools to implement machine/deep learning algorithms in their Android phones to be smarter. The course will end with a 4 weeks project where the students can target a specific application scenario. The course will be taught in English. |
Seite 2 von 5
Alle