Suchergebnis: Katalogdaten im Herbstsemester 2019

Informatik Lehrdiplom Information
Weitere Informationen: Link
Fachwiss. Vertiefung mit pädagogischem Fokus und weitere Fachdidaktik
NummerTitelTypECTSUmfangDozierende
252-0341-01LInformation Retrieval Information W4 KP2V + 1UG. Fourny
KurzbeschreibungThis course gives an introduction to information retrieval with a focus on text documents and unstructured data.

Main topics comprise document modelling, various retrieval techniques, indexing techniques, query frameworks, optimization, evaluation and feedback.
LernzielWe keep accumulating data at an unprecedented pace, much faster than we can process it. While Big Data techniques contribute solutions accounting for structured or semi-structured shapes such as tables, trees, graphs and cubes, the study of unstructured data is a field of its own: Information Retrieval.

After this course, you will have in-depth understanding of broadly established techniques in order to model, index and query unstructured data (aka, text), including the vector space model, boolean queries, terms, posting lists, dealing with errors and imprecision.

You will know how to make queries faster and how to make queries work on very large datasets. You will be capable of evaluating the quality of an information retrieval engine.

Finally, you will also have knowledge about alternate models (structured data, probabilistic retrieval, language models) as well as basic search algorithms on the web such as Google's PageRank.
Inhalt1. Introduction

2. Boolean retrieval: the basics of how to index and query unstructured data.

3. Term vocabulary: pre-processing the data prior to indexing: building the term vocabulary, posting lists.

4. Tolerant retrieval: dealing with spelling errors: tolerant retrieval.

5. Index construction: scaling up to large datasets.

6. Index compression: how to improve performance by compressing the index in various ways.

7. Ranked retrieval: how to ranking results with scores and the vector space model

8. Scoring in a bigger picture: taking ranked retrieval to the next level with various improvements, including inexact retrieval

9. Probabilistic information retrieval: how to leverage Bayesian techniques to build an alternate, probabilistic model for information retrieval

10. Language models: another alternate model based on languages, automata and document generation

11. Evaluation: precision, recall and various other measurements of quality

12. Web search: PageRank

13. Wrap-up.

The lecture structure will follow the pedagogical approach of the book (see material).

The field of information retrieval also encompasses machine learning aspects. However, we will make a conscious effort to limit overlaps, and be complementary with, the Introduction to Machine Learning lecture.
LiteraturC. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press.
Voraussetzungen / BesonderesPrior knowledge in elementary set theory, logics, linear algebra, data structures, abstract data types, algorithms, and probability theory (at the Bachelor's level) is required, as well as programming skills (we will use Python).
252-1407-00LAlgorithmic Game Theory Information W7 KP3V + 2U + 1AP. Penna
KurzbeschreibungGame theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.
LernzielLearning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.
InhaltThe Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a particularly well-suited model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.
SkriptLecture notes will be usually posted on the website shortly after each lecture.
Literatur"Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008;

"Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004

Several copies of both books are available in the Computer Science library.
Voraussetzungen / BesonderesAudience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.
263-2800-00LDesign of Parallel and High-Performance Computing Information Belegung eingeschränkt - Details anzeigen W8 KP3V + 2U + 2AM. Püschel, T. Ben Nun
KurzbeschreibungAdvanced topics in parallel / concurrent programming.
LernzielUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
Wahlpflicht
Weitere Lehrangebote aus dem Bereich Erziehungswissenschaften sind unter "Studiengang: Ausbildung in Erziehungswissenschaften für Lehrdiplom und DZ" aufgeführt.
NummerTitelTypECTSUmfangDozierende
» siehe Wahlpflicht Lehrdiplom für Maturitätsschulen
851-0238-01LUnterstützung und Diagnose von Wissenserwerbsprozessen (EW3) Belegung eingeschränkt - Details anzeigen
Belegung für Studierende des Lehrdiploms (ausgenommen für Lehrdiplom-Studierende des Fachs Sport, welche die sportspezifische Lerneinheit EW3 absolvieren) sowie für Studierende, welche vorhaben, sich in den Studiengang "Lehrdiplom für Maturitätsschulen" einzuschreiben.

Voraussetzung für die Belegung ist der erfolgreiche Abschluss der Vorlesung 851-0240-00L "Menschliches Lernen (EW1)".
W3 KP3SP. Edelsbrunner, C. M. Thurn
KurzbeschreibungDieses Seminar vermittelt vertiefte lernpsychologische Kenntnisse zu den Möglichkeiten der Unterstützung sowie der Diagnose von Wissenserwerbsprozessen im Unterricht.
LernzielDie Hauptziele der Veranstaltung sind:
(1) Sie haben ein vertieftes Verständnis über die kognitiven Mechanismen des Wissenserwerbs.
(2) Sie verfügen über ein Grundverständnis psychologischer Testtheorie und sind in der Lage, Tests angemessen einzusetzen.
(3) Sie kennen verschiedene Techniken des Formative Assessments und können diese inhalts- und situationsadäquat zur Aufdeckung von Misskonzepten anwenden.
Voraussetzungen / BesonderesFür eine reibungslose Semesterplanung wird um persönliches Erscheinen zum ersten Lehrveranstaltungstermin ersucht.
Auflagenfächer (für Studierende mit ETH-Master in Phys/MATH/RW)
Teil 1
NummerTitelTypECTSUmfangDozierende
252-0057-00LTheoretische Informatik Information O7 KP4V + 2UJ. Hromkovic, H.‑J. Böckenhauer
KurzbeschreibungKonzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen?
LernzielVermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung
InhaltDie Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert.

Die Hauptthemen der Vorlesung sind:

- Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben
- endliche Automaten, reguläre und kontextfreie Grammatiken
- Turingmaschinen und Berechenbarkeit
- Komplexitätstheorie und NP-Vollständigkeit
- Algorithmenentwurf für schwere Probleme
SkriptDie Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt.
LiteraturBasisliteratur:
1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014.

2. J. Hromkovic: Theoretical Computer Science. Springer 2004.

Weiterführende Literatur:
3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997
4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Pearson 2002.
5. I. Wegener: Theoretische Informatik. Teubner
Weitere Übungen und Beispiele:
6. A. Asteroth, Ch. Baier: Theoretische Informatik
Voraussetzungen / BesonderesWährend des Semesters werden zwei freiwillige Probeklausuren gestellt.
252-0061-00LSystems Programming and Computer Architecture Information O7 KP4V + 2UT. Roscoe
KurzbeschreibungIntroduction to systems programming. C and assembly language,
floating point arithmetic, basic translation of C into assembler,
compiler optimizations, manual optimizations. How hardware features
like superscalar architecture, exceptions and interrupts, caches,
virtual memory, multicore processors, devices, and memory systems
function and affect correctness, performance, and optimization.
LernzielThe course objectives are for students to:

1. Develop a deep understanding of, and intuition about, the execution
of all the layers (compiler, runtime, OS, etc.) between programs in
high-level languages and the underlying hardware: the impact of
compiler decisions, the role of the operating system, the effects
of hardware on code performance and scalability, etc.

2. Be able to write correct, efficient programs on modern hardware,
not only in C but high-level languages as well.

3. Understand Systems Programming as a complement to other disciplines
within Computer Science and other forms of software development.

This course does not cover how to design or build a processor or
computer.
InhaltThis course provides an overview of "computers" as a
platform for the execution of (compiled) computer programs. This
course provides a programmer's view of how computer systems execute
programs, store information, and communicate. The course introduces
the major computer architecture structures that have direct influence
on the execution of programs (processors with registers, caches, other
levels of the memory hierarchy, supervisor/kernel mode, and I/O
structures) and covers implementation and representation issues only
to the extend that they are necessary to understand the structure and
operation of a computer system.

The course attempts to expose students to the practical issues that
affect performance, portability, security, robustness, and
extensibility. This course provides a foundation for subsequent
courses on operating systems, networks, compilers and many other
courses that require an understanding of the system-level
issues. Topics covered include: machine-level code and its generation
by optimizing compilers, address translation, input and output,
trap/event handlers, performance evaluation and optimization (with a
focus on the practical aspects of data collection and analysis).
Skript- C programmnig
- Integers
- Pointers and dynamic memory allocation
- Basic computer architecture
- Compiling C control flow and data structures
- Code vulnerabilities
- Implementing memory allocation
- Linking
- Floating point
- Optimizing compilers
- Architecture and optimization
- Caches
- Exceptions
- Virtual memory
- Multicore
- Devices
LiteraturThe course is based in part on "Computer Systems: A Programmer's Perspective" (3rd Edition) by R. Bryant and D. O'Hallaron, with additional material.
Voraussetzungen / Besonderes252-0029-00L Parallel Programming
252-0028-00L Design of Digital Circuits
252-0026-00LAlgorithmen und Datenstrukturen Information Belegung eingeschränkt - Details anzeigen O7 KP3V + 2U + 1AM. Püschel, D. Steurer
KurzbeschreibungEs werden grundlegende Entwurfsmuster für Algorithmen sowie klassische algorithmische Probleme und Datenstrukturen behandelt. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. In die Graphentheorie wird kurz eingeführt.
LernzielVerständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen.
InhaltEs werden grundlegende Algorithmen und Datenstrukturen vorgestellt und analysiert. Dazu gehören auf der einen Seite Entwurfsmuster für Algorithmen, wie Induktion, divide-and-conquer, backtracking und dynamische Optimierung, ebenso wie klassische algorithmische Probleme, wie Suchen und Sortieren. Auf der anderen Seite werden Datenstrukturen für verschiedene Zwecke behandelt, darunter verkettete Listen, Hashtabellen, balancierte Suchbäume, verschiedene heaps und union-find-Strukturen. Weiterhin wird Adaptivität bei Datenstrukturen (wie etwa Splay-Bäume) und bei Algorithmen (wie etwa online-Algorithmen) beleuchtet. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. Hierfür werden grundlegende Konzepte der Graphentheorie eingeführt.
LiteraturTh. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011
Teil 2
NummerTitelTypECTSUmfangDozierende
252-0209-00LAlgorithms, Probability, and Computing Information W8 KP4V + 2U + 1AA. Steger, B. Gärtner, M. Ghaffari, D. Steurer
KurzbeschreibungAdvanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).
LernzielStudying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.
SkriptWill be handed out.
LiteraturIntroduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest;
Randomized Algorithms by R. Motwani und P. Raghavan;
Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
  • Erste Seite Vorherige Seite Seite  2  von  2     Alle