Search result: Catalogue data in Spring Semester 2018
MAS in Medical Physics | ||||||
Specialization: General Medical Physics and Biomedical Engineering | ||||||
Major in Biomechanics | ||||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
376-1217-00L | Rehabilitation Engineering I: Motor Functions | W | 4 credits | 2V + 1U | R. Riener, J. Duarte Barriga | |
Abstract | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | |||||
Learning objective | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | |||||
Content | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | |||||
Lecture notes | Lecture notes will be distributed at the beginning of the lecture (1st session) | |||||
Literature | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1308-00L | Development Strategies for Medical Implants Number of participants limited to 25 until 30. Assignments will be considered chronological. | W | 3 credits | 2V + 1U | J. Mayer-Spetzler, M. Rubert | |
Abstract | Introduction to development strategies for implantable devices considering the interdependecies of biocompatibility, clinical and economical requirements ; discussion of the state of the art and actual trends in in orthopedics, sports medicine, traumatology and cardio-vascular surgery as well as regenerative medicine (tissue engineering). | |||||
Learning objective | Basic considerations in implant development Concept of structural and surface biocompatiblity and its relevance for the design of implant and surgical technique Understanding of conflicting factors, e.g. clinical need, economics and regulatory requirements Concepts of tissue engineering, its strengths and weaknesses as current and future clinical solution | |||||
Content | Biocompatibility as bionic guide line for the development of medical implants; implant and implantation related tissue reactions, biocompatible materials and material processing technologies; implant testing and regulatory procedures; discussion of the state of the art and actual trends in implant development in orthopedics, sports medicine, traumatology, spinal and cardio-vascular surgery; introduction to tissue engineering. Selected topics will be further illustrated by commented movies from surgeries. Seminar: Group seminars on selected controversial topics in implant development. Participation is mandatory Planned excursions (limited availability, not mandatory, to be confirmed): 1. Participation (as visitor) on a life surgery (travel at own expense) | |||||
Lecture notes | Scribt (electronically available): - presented slides - selected scientific papers for further reading | |||||
Literature | Textbooks on selected topics will be introduced during the lectures | |||||
Prerequisites / Notice | Achieved Bachelor degree is mandatory The number of participants in the course is limited to 25-30 students in total. Students will be exposed to surgical movies which may cause emotional reactions. The viewing of the surgical movies is voluntary and is on the student's own responsability. | |||||
376-1721-00L | Bone Biology and Consequences for Human Health | W | 2 credits | 2V | G. A. Kuhn, J. Goldhahn, E. Wehrle | |
Abstract | Bone is a complex tissue that continuously adapts to mechanical and metabolic demands. Failure of this remodeling results in reduced mechanic stability ot the skeleton. This course will provide the basic knowledge to understand the biology and pathophysiology of bone necessary for engineering of bone tissue and design of implants. | |||||
Learning objective | After completing this course, students will be able to understand: a) the biological and mechanical aspects of normal bone remodeling b) pathological changes and their consequences for the musculoskeletal system c) the consequences for implant design, tissue engineering and treatment interventions. | |||||
Content | Bone adapts continuously to mechanical and metabolic demands by complex remodeling processes. This course will deal with biological processes in bone tissue from cell to tissue level. This lecture will cover mechanisms of bone building (anabolic side), bone resorption (catabolic side), their coupling, and regulation mechanisms. It will also cover pathological changes and typical diseases like osteoporosis. Consequences for musculoskeletal health and their clinical relevance will be discussed. Requirements for tissue engineering as well as implant modification will be presented. Actual examples from research and development will be utilized for illustration. | |||||
Major in Bioimaging | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0390-00L | Elements of Microscopy | W | 4 credits | 3G | M. Stampanoni, G. Csúcs, A. Sologubenko | |
Abstract | The lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging. | |||||
Learning objective | Solid introduction to the basics of microscopy, either with visible light, electrons or X-rays. | |||||
Content | It would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level. The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy. During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated. | |||||
Literature | Available Online. | |||||
227-0946-00L | Molecular Imaging - Basic Principles and Biomedical Applications | W | 2 credits | 2V | M. Rudin | |
Abstract | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
Learning objective | Molecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research. | |||||
Content | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
227-0948-00L | Magnetic Resonance Imaging in Medicine | W | 4 credits | 3G | S. Kozerke, M. Weiger Senften | |
Abstract | Introduction to magnetic resonance imaging and spectroscopy, encoding and contrast mechanisms and their application in medicine. | |||||
Learning objective | Understand the basic principles of signal generation, image encoding and decoding, contrast manipulation and the application thereof to assess anatomical and functional information in-vivo. | |||||
Content | Introduction to magnetic resonance imaging including basic phenomena of nuclear magnetic resonance; 2- and 3-dimensional imaging procedures; fast and parallel imaging techniques; image reconstruction; pulse sequences and image contrast manipulation; equipment; advanced techniques for identifying activated brain areas; perfusion and flow; diffusion tensor imaging and fiber tracking; contrast agents; localized magnetic resonance spectroscopy and spectroscopic imaging; diagnostic applications and applications in research. | |||||
Lecture notes | D. Meier, P. Boesiger, S. Kozerke Magnetic Resonance Imaging and Spectroscopy | |||||
227-0384-00L | Ultrasound Fundamentals, Imaging, and Medical Applications Number of participants limited to 25. | W | 4 credits | 3G | O. Göksel | |
Abstract | Ultrasound is the only imaging modality that is nonionizing (safe), real-time, cost-effective, and portable, with many medical uses in diagnosis, intervention guidance, surgical navigation, and as a therapeutic option. In this course, we introduce conventional and prospective applications of ultrasound, starting with the fundamentals of ultrasound physics and imaging. | |||||
Learning objective | Students can use the fundamentals of ultrasound, to analyze and evaluate ultrasound imaging techniques and applications, in particular in the field of medicine, as well as to design and implement basic applications. | |||||
Content | Ultrasound is used in wide range of products, from car parking sensors, to assessing fault lines in tram wheels. Medical imaging is the eye of the doctor into body; and ultrasound is the only imaging modality that is nonionizing (safe), real-time, cheap, and portable. Some of its medical uses include diagnosing breast and prostate cancer, guiding needle insertions/biopsies, screening for fetal anomalies, and monitoring cardiac arrhythmias. Ultrasound physically interacts with the tissue, and thus can also be used therapeutically, e.g., to deliver heat to treat tumors, break kidney stones, and targeted drug delivery. Recent years have seen several novel ultrasound techniques and applications – with many more waiting in the horizon to be discovered. This course covers ultrasonic equipment, physics of wave propagation, numerical methods for its simulation, image generation, beamforming (basic delay-and-sum and advanced methods), transducers (phased-, linear-, convex-arrays), near- and far-field effect, imaging modes (e.g., A-, M-, B-mode), Doppler and harmonic imaging, ultrasound signal processing techniques (e.g., filtering, time-gain-compensation, displacement tracking), image analysis techniques (deconvolution, real-time processing, tracking, segmentation, computer-assisted interventions), acoustic-radiation force, plane-wave imaging, contrast agents, micro-bubbles, elastography, biomechanical characterization, high-intensity focused ultrasound and therapy, lithotripsy, histotripsy, photo-acoustics phenomenon and opto-acoustic imaging, as well as sample non-medical applications such as the basics of non-destructive testing (NDT). | |||||
Prerequisites / Notice | Hands-on exercises will help apply concepts learned in the module, and will involve a mix of designing, implementing, and evaluating in simulation environments, such as Matlab FieldII and k-Wave toolboxes. Prerequisites: Familiarity with basic numerical methods. Basic programming skills and experience in Matlab. | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0622-00L | Measuring on the Nanometer Scale | W | 2 credits | 2G | A. Stemmer, T. Wagner | |
Abstract | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Learning objective | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Content | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||
Lecture notes | Class notes and special papers will be distributed. | |||||
227-0391-00L | Medical Image Analysis Basic knowledge of computer vision would be helpful. | W | 3 credits | 2G | E. Konukoglu, P. C. Cattin, M. A. Reyes Aguirre | |
Abstract | It is the objective of this lecture to introduce the basic concepts used in Medical Image Analysis. In particular the lecture focuses on shape representation schemes, segmentation techniques, machine learning based predictive models and various image registration methods commonly used in Medical Image Analysis applications. | |||||
Learning objective | This lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas. | |||||
Prerequisites / Notice | Prerequisites: Basic concepts of mathematical analysis and linear algebra. Preferred: Basic knowledge of computer vision and machine learning would be helpful. The course will be held in English. | |||||
227-0966-00L | Quantitative Big Imaging: From Images to Statistics | W | 4 credits | 2V + 1U | K. S. Mader, M. Stampanoni | |
Abstract | The lecture focuses on the challenging task of extracting robust, quantitative metrics from imaging data and is intended to bridge the gap between pure signal processing and the experimental science of imaging. The course will focus on techniques, scalability, and science-driven analysis. | |||||
Learning objective | 1. Introduction of applied image processing for research science covering basic image processing, quantitative methods, and statistics. 2. Understanding of imaging as a means to accomplish a scientific goal. 3. Ability to apply quantitative methods to complex 3D data to determine the validity of a hypothesis | |||||
Content | Imaging is a well established field and is rapidly growing as technological improvements push the limits of resolution in space, time, material and functional sensitivity. These improvements have meant bigger, more diverse datasets being acquired at an ever increasing rate. With methods varying from focused ion beams to X-rays to magnetic resonance, the sources for these images are exceptionally heterogeneous; however, the tools and techniques for processing these images and transforming them into quantitative, biologically or materially meaningful information are similar. The course consists of equal parts theory and practical analysis of first synthetic and then real imaging datasets. Basic aspects of image processing are covered such as filtering, thresholding, and morphology. From these concepts a series of tools will be developed for analyzing arbitrary images in a very generic manner. Specifically a series of methods will be covered, e.g. characterizing shape, thickness, tortuosity, alignment, and spatial distribution of material features like pores. From these metrics the statistics aspect of the course will be developed where reproducibility, robustness, and sensitivity will be investigated in order to accurately determine the precision and accuracy of these quantitative measurements. A major emphasis of the course will be scalability and the tools of the 'Big Data' trend will be discussed and how cluster, cloud, and new high-performance large dataset techniques can be applied to analyze imaging datasets. In addition, given the importance of multi-scale systems, a data-management and analysis approach based on modern databases will be presented for storing complex hierarchical information in a flexible manner. Finally as a concluding project the students will apply the learned methods on real experimental data from the latest 3D experiments taken from either their own work / research or partnered with an experimental imaging group. The course provides the necessary background to perform the quantitative evaluation of complicated 3D imaging data in a minimally subjective or arbitrary manner to answer questions coming from the fields of physics, biology, medicine, material science, and paleontology. | |||||
Lecture notes | Available online. | |||||
Literature | Will be indicated during the lecture. | |||||
Prerequisites / Notice | Ideally students will have some familiarity with basic manipulation and programming in languages like Matlab and R. Interested students who are worried about their skill level in this regard are encouraged to contact Kevin Mader directly (mader@biomed.ee.ethz.ch). More advanced students who are familiar with Java, C++, and Python will have to opportunity to develop more of their own tools. | |||||
227-0967-00L | Computational Neuroimaging Clinic | W | 3 credits | 2V | K. Stephan | |
Abstract | This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. | |||||
Learning objective | 1. Consolidation of theoretical knowledge (obtained in one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting. 2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data. | |||||
Content | This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. . | |||||
Prerequisites / Notice | The participants are expected to have successfully completed at least one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry' | |||||
227-1034-00L | Computational Vision (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: INI402 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 6 credits | 2V + 1U | D. Kiper, K. A. Martin | |
Abstract | This course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision. | |||||
Learning objective | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Content | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Literature | Books: (recommended references, not required) 1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997. 2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995. | |||||
Major in Bioengineering | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 credits | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Learning objective | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Content | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include all forms of myogenesis (cardiac, skeletal and smooth muscles), osteogenesis (bones), chondrogenesis (cartilage), tendogenesis (tendons) and angiogenesis (blood vessels). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Lecture notes | n/a | |||||
Literature | Topical Scientific Manuscripts | |||||
376-1614-00L | Principles in Tissue Engineering | W | 3 credits | 2V | K. Maniura, J. Möller, M. Zenobi-Wong | |
Abstract | Fundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Learning objective | Understanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed. | |||||
Content | This class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Lecture notes | Handouts provided during the classes and references therin. | |||||
Literature | The molecular Biology of the Cell, Alberts et al., 5th Edition, 2009. Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002 | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives 376-1622-00L Practical Methods in Tissue Engineering (offered in the Autumn Semester) and 376-1624-00L Practical Methods in Biofabrication (offered in the Spring Semester) are mutually exclusive to be eligible for credits. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0622-00L | Measuring on the Nanometer Scale | W | 2 credits | 2G | A. Stemmer, T. Wagner | |
Abstract | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Learning objective | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Content | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||
Lecture notes | Class notes and special papers will be distributed. | |||||
151-0630-00L | Nanorobotics | W | 4 credits | 2V + 1U | S. Pané Vidal | |
Abstract | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||
Learning objective | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. | |||||
227-0946-00L | Molecular Imaging - Basic Principles and Biomedical Applications | W | 2 credits | 2V | M. Rudin | |
Abstract | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
Learning objective | Molecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research. | |||||
Content | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
376-1624-00L | Practical Methods in Biofabrication Number of participants limited to 12. | W | 5 credits | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Abstract | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Learning objective | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Prerequisites / Notice | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering |
- Page 2 of 4 All