Search result: Catalogue data in Autumn Semester 2018

Electrical Engineering and Information Technology Master Information
Master Studies (Programme Regulations 2008)
Major Courses
A total of 42 CP must be achieved during the Master Program. The individual study plan is subject to the tutor's approval.
Subjects of General Interest
These courses are suitable for several special fields. Please consult your tutor.
NumberTitleTypeECTSHoursLecturers
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 credits3GA. Kunz
AbstractThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
Learning objectiveVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
ContentIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
Lecture notesThe handout is available in German and English.
Prerequisites / NoticePrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
Internship in Industry
NumberTitleTypeECTSHoursLecturers
227-1550-00LInternship in Industry Restricted registration - show details
Only for Electrical Engineering and Information Technology MSc (Programme Regulations 2008).
Z0 creditsexternal organisers
AbstractThe main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.
Learning objectivesee above
Semester Projects
NumberTitleTypeECTSHoursLecturers
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 creditsJ. Leuthold
AbstractThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
Learning objectiveKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Content* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteratureETH "Citation Etiquette", see www.plagiate.ethz.ch.

ETH Guidlines on "Guidelines for Research Integrity", see www.ee.ethz.ch > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Prerequisites / NoticeStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1572-01LSemester Project Restricted registration - show details
Registration in myStudies required!
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

The first semester project is compulsory both for students enrolled in the MSc EEIT under the 2008 regulations and for students enrolled under the 2018 regulations.
O12 credits20ASupervisors
AbstractSemester projects are designed to train the students for independent scientific work. A project uses the student's technical and social skills acquired during the master's program. The semester project comprises 280 hours of work and is supervised by a professor.
Learning objectivesee above
Prerequisites / NoticeSupervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html
227-1572-02LSemester Project (Nr 2) Restricted registration - show details
Registration in myStudies required!
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html

The second semester project is compulsory for students enrolled in the MSc EEIT under the 2008 regulations, it is optional for students enrolled under the 2018 regulations.

Students enrolled in the MSc EEIT under the 2018 regulations must consult their tutor before enrolling for semester project 2.
W12 credits20ASupervisors
AbstractSemester projects are designed to train the students for independent scientific work. A project uses the student's technical and social skills acquired during the master's program. The semester project comprises 280 hours of work and is supervised by a professor.
Learning objectivesee above
Prerequisites / NoticeSupervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html
GESS Science in Perspective
» Recommended Science in Perspective (Type B) for D-ITET
» see Science in Perspective: Language Courses ETH/UZH
» see Science in Perspective: Type A: Enhancement of Reflection Capability
Master's Thesis
NumberTitleTypeECTSHoursLecturers
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 creditsJ. Leuthold
AbstractThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
Learning objectiveKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Content* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteratureETH "Citation Etiquette", see www.plagiate.ethz.ch.

ETH Guidlines on "Guidelines for Research Integrity", see www.ee.ethz.ch > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Prerequisites / NoticeStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1501-00LMaster's Thesis Restricted registration - show details
Admission only if ALL of the following apply:
a) bachelor program successfully completed;
b) acquired (if applicable) all credits from additional requirements for admission to master program;
c) successfully completed both semester projects.

Note: the conditions above are not applicable to incoming exchange students.

Registration in mystudies required!
Supervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html.
O30 credits68DSupervisors
AbstractThe Master Program finishes with a 6-months Master Thesis which is directed by a Professor of the Department or a Professor of another Department who is associated with the D-ITET. Students gain the ability to conduct independent scientific research on a specific research problem.
Learning objectivesee above
Prerequisites / NoticeSupervisor must be a professor at D-ITET or associated, see https://www.ee.ethz.ch/studies/main-master/projects-and-master-thesis.html
Generally Accessible Seminars and Colloquia
NumberTitleTypeECTSHoursLecturers
227-0919-00LKnowledge-Based Image Interpretation Information Z0 credits2SL. Van Gool
AbstractWith the lecture series on special topics of Knowledge based image interpretation we sporadically offer special talks.
Learning objectiveTo become acquainted with selected, recent results in image analysis and interpretation.
227-0920-00LSeminar in Systems and ControlZ0 credits1SF. Dörfler, R. D'Andrea, E. Frazzoli, M. H. Khammash, J. Lygeros, R. Smith
AbstractCurrent topics in Systems and Control presented mostly by external speakers from academia and industry
Learning objectivesee above
227-0955-00LSeminar in Electromagnetics, Photonics and Terahertz Information Z3 credits2SJ. Leuthold
AbstractSelected topics of the current research activities at the IEF and closely related institutions are discussed.
Learning objectiveHave an overview on the research activities of the IEF institute.
227-0970-00LResearch Topics in Biomedical EngineeringZ0 credits2KK. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörös
AbstractCurrent topics in Biomedical Engineering presented by speakers from academia and industry.
Learning objectiveGetting insight into actual areas and problems of Biomedical Engineering an Health Care.
227-0980-00LSeminar on Biomedical Magnetic ResonanceZ0 credits1SK. P. Prüssmann, S. Kozerke
AbstractActuel developments and problems of magnetic resonance imaging (MRI)
Learning objectiveGetting insight to advanced topics in Magnetic Resonance Imaging
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional requirements.
NumberTitleTypeECTSHoursLecturers
227-0101-AALDiscrete-Time and Statistical Signal Processing
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits8RH.‑A. Loeliger
AbstractThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
Learning objectiveThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Content1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
Lecture notesLecture Notes.
227-0103-AALControl Systems Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits8RF. Dörfler
AbstractStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
Learning objectiveStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ContentProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteratureK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Prerequisites / NoticePrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0166-AALAnalog Integrated Circuits
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

Course offered only in the autumn semester with an examination only in winter.
E-6 credits8RQ. Huang
AbstractThis course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.
Learning objectiveIntegrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.
The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.
ContentReview of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; Stability; Comparators; Second-order effects in analog circuits such as mismatch, noise and offset; A/D and D/A converters; Introduction to switched capacitor circuits.
Lecture notesHandouts of slides. No script but an accompanying textbook is recommended.
LiteratureGray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", 5th Ed. Wiley, 2010.
227-0117-AALHigh Voltage Engineering II: Insulation Technology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits8RC. Franck
AbstractUnderstanding of the fundamental phenomena and principles connected with the occurrence of extensive electric field strengths. This knowledge is applied to the dimensioning of high-voltage equipment. Methods of computer-modeling in use today are presented and applied within a workshop in the framework of the exercises.
Learning objectiveThe students know the fundamental phenomena and principles connected with the occurrence of extensive electric field strengths. They comprehend the different mechanisms leading to the failure of insulation systems and are able to apply failure criteria on the dimensioning of high voltage components. They have the ability to identify of weak spots in insulation systems and to name possibilities for improvement. Further they know the different insulation systems and their dimensioning in practice.
Content- discussion of the field equations relevant for high voltage engineering.
- analytical and numerical solutions/solving of this equations, as well as the derivation of the important equivalent circuits for the description of the fields and losses in insulations
- introduction to kinetic theory of gases
- mechanisms of the breakdown in gaseous, liquid and solid insulations, as well as insulation systems
- methods for the mathematical determination of the electric withstand of gaseous, liquid and solid insulations
- application of the expertise on high voltage components
- excursions to manufacturers of high voltage components
- excercise to learn on computer-modeling in high voltage engineering
Lecture notesHandouts
LiteratureA. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3-662-54699-4)
  • First page Previous page Page  12  of  12