Search result: Catalogue data in Autumn Semester 2024
Civil Engineering Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bachelor Studies (Programme Regulations 2022) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Second and Third Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses of Examination Blocks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0315-00L | Geotechnical Engineering | O | 5 credits | 4G | A. Puzrin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course explores the fundamental principles of Geomechanics and Geotechnical Engineering, with the following objectives: - Recognition of the basic consequences of the ground construction; - Understanding of the important fundamental concepts of Soil mechanics and Geotechnical Engineering; - Independent analysis of the basic geotechnical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course explores the fundamental principles of Geomechanics and Geotechnical Engineering, with the following objectives: - Recognition of the basic consequences of the ground construction; - Understanding of the important fundamental concepts of Soil mechanics and Geotechnical Engineering; - Independent analysis of the basic geotechnical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Overview of stability problems; Bearing capacity of shallow and deep foundations; Soil-foundation interaction; Analysis and design of shallow and deep fondations; Earth pressure on retaining structures; Analysis and design of retaining walls; Excavations: dewatering, analysis and design; Soil improvement; Safety considerations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Examples Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Lang, H.-J.; Huder, J.; Amann, P.; Puzrin, A.M.: Bodenmechanik und Grundbau, Springer-Lehrbuch, 9. Auflage, 2010 ( für eingeschriebene Studierende Ermässigung in Poly Buchhandlung)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0135-01L | Steel Structures II | O | 4 credits | 5G | A. Taras, U. Angst | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theoretical foundation and constructional features of the design and construction of steel and steel-concrete composite structures. Multi-storey buildings and bridges. Structural analysis for steel-concrete composite structures. Plate buckling of unstiffened and stiffened panels. Fatigue resistance and safe life assessment. Detailling, drafting, fabrication and erection, cost estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will expand the knowledge acquired during "Steel Structures I" and learn how to apply these skills to the design of more complex building and bridge steel and composite structures. They will acquire the fundamental background for the phenomena of plate buckling and fatigue and learn how to apply it to practical design tasks. In addition, students will learn to appreciate the importance of questions of detailling, fabrication, erection and cost calculation for the effective design of steel and composite structures. After completion of the year-long course in Steel Structures I+II, students will have at their disposal a wide and detailled set of skills concerning the modern practice for steel and composite structures design and have a deep understanding of its theoretical & scientific background. The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture Steel Structures II complements the knowledge acquired in part I by providing students with additional theoretical and practical knowledge, e.g. on the design of steel and composite structures against fatigue, plate buckling, as well as on the structural modelling and analysis of more complex building and bridge structures. These more theoretical topics will be exemplified and illustrated by applications to real problems in the design of bridges and multi-storey building structures. Finally, the course will provide detailled insight into aspects pertaining to structural detailling, fabrication, erection and cost estimation for constructional steelwork. Content overview: - Structural forms, analysis techniques and modelling of multi-storey buildings and bridges. - Structural analysis (deformations, internal forces, stresses and strains) in steel-concrete composite girders considering the effects of creep, shrinkage and shear deformations. - Elastic and plastic longitudinal shear transfer mechanisms and effects - Plate buckling of unstiffened and stiffened panels - Fatigue resistance and safe life assessment: phenomenon and design approaches - Special topics of steel connection design - Detailling, drafting, fabrication and erection, cost determination in constructional steelwork | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and slides. Worked Examples with summary of theory. Design aids and formula collections. Videos of lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - J.-P. Lebet, M. Hirt: Steel Bridges, Conceptual and Structural Design of Steel and Steel-Concrete Composite Bridges, EPFL Press - Stahlbaukalender (various editions), Ernst & Sohn, Berlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The content of steel structures I is a prerequisite | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0415-01L | Public Transport and Railways | O | 3 credits | 2G | F. Corman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of public and collective transport, in its different forms. Categorization of performance dimensions of public transport systems, and their implications to their design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Teaches the basic principles of public transport network and topology design, to understand the main characteristics and differences of public transport networks, based on buses, railways, or other technologies. Teaches students to recognize the interactions between the infrastructure design and the production processes, and various performance criteria based on various perspective and stakeholders. At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate different choices of technologies to suitable cases; optimize the use of resources in public transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamentals: Infrastructures and vehicle technologies of public transport systems; interaction between track and vehicles; passengers and goods as infrastructure users; management and financing of networks. Infrastructure: Planning processes and decision levels in network development and infrastructure planning, planning of topologies; tracks and roadways, station infrastructures; Fundamentals of the infrastructure design for lines; track geometries; switches and crossings Vehicles: Classification, design and suitability for different goals Network design: design dilemmas, conceptual models for passenger transport on long distance, urban regional transport. Operations: Passenger/Supply requirements for line operations; timetabling, measures of realized operations, capacity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides, in English, are made available some days before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Reference material books are provided in German and English (list disseminated at lecture), plus Skript Bahninfrastruktur; System- und Netzplanung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0031-10L | Systems Engineering | O | 3 credits | 2G | B. T. Adey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | • Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term. • This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The world’s growing population, changing demographics, and changing climate pose formidable challenges to humanity’s ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth’s growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified. The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems. More specifically upon completion of the course, you will have gained insight into: • how to structure the large amount of information that is often associated with attempting to modify complex systems • how to set goals and define constraints in the engineering of complex systems • how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking • how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future • how to assess values of benefits to stakeholders that are not in monetary units • how to assess whether it is worth obtaining more information in determining optimal solution • how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture • the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lectures are structured as follows: 1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms. A high-level overview of the main principles of System Engineering. The expectations of your efforts throughout the semester. 2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems. 3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible. 4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders. 5. The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, weighting, and expected value. 6. The idea behind the supply and demand curves and revealed preference methods. 7. The concept of equivalence, including the time value of money, interest, life times and terminal values. 8. The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Internal rates of return. 9. How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information. 10. Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. Linear programming and the simplex method. 11. How sensitivity analysis is conducted using linear programming. 12. How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems. 13. How to set up and solve problems when there are multiple objectives. The course uses a combination of qualitative and quantitative approaches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | • The lecture materials consist of a script, the slides, example calculations in Excel, Moodle quizzes, and excercises. • The lecture materials will be distributed via Moodle before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Appropriate literature in addition to the lecture materials will be handed out when required via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0293-00L | Hydrology | O | 3 credits | 2G | P. Burlando | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Know the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The hydrological cycle: global water resources, water balance, space and time scales of hydrological processes. Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph. Interception: measurement and estimation. Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods. Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method. Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve. Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density. Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model. Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method). Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport. Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Chow, V.T., Maidment, D.R. and Mays, L.W. (1988). Applied Hydrology, New York, McGraw-Hill. Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall. Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill. Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997). Applied Principles of Hydrology, 3rd ed., Upper Saddle River, N.J., Prentice Hall. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows: Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters). Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation. |
- Page 1 of 1