Suchergebnis: Katalogdaten im Herbstsemester 2024
Space Systems Master | |||||||||||||||||||||||||||||||||||||||||||||
Fachspezifische Vertiefung Es müssen mindestens 20 KP aus den Deep Track Lerneinheiten absolviert werden. Überzählige KP können für Wahlfächer angerechnet werden. | |||||||||||||||||||||||||||||||||||||||||||||
Aerospace Engineering | |||||||||||||||||||||||||||||||||||||||||||||
Wahlfächer Aerospace Engineering Diese Fächer können nur als Wahlfach angerechnet werden. | |||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
103-0187-01L | Space Geodesy | W+ | 6 KP | 4G | B. Soja | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | GNSS, VLBI, SLR/LLR and satellite altimetry: Principles, instrumentation and observation equation. Modelling and estimation of station coordinates and station motion. Ionospheric and tropospheric refraction and estimation of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Perturbation theory and orbit determination. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this course, the students should be able to • Describe the major observation techniques in space geodesy • Describe the necessary modeling and analysis approaches to derive geodetic products of highest quality • Select the appropriate space geodetic data for scientific investigations • Analyze the space geodetic data for scientific purposes • Interpret the scientific results | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of GNSS, Very Long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR/LLR), Satellite Radar Altimetry with the basic principles, the instruments and observation equations. Modelling of the station motions and the estimation of station coordinates. Basics of wave propagation in the atmosphere. Signal propagation in the ionosphere and troposphere for the different observation techniques and the determination of atmospheric parameters. Equation of motion of the unperturbed and perturbed satellite orbit. Osculating and mean orbital elements. General and special perturbation theory and the determination of satellite orbits. | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Script M. Rothacher "Space Geodesy" | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||||||||
227-0377-10L | Physics of Failure and Reliability of Electronic Devices and Systems | W+ | 3 KP | 2V | I. Shorubalko, M. Held | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Understanding the physics of failures and failure mechanisms enables reliability analysis and serves as a practical guide for electronic devices design, integration, systems development and manufacturing. The field gains additional importance in the context of managing safety, sustainability and environmental impact for continuously increasing complexity and scaling-down trends in electronics. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Provide an understanding of the physics of failure and reliability. Introduce the degradation and failure mechanisms, basics of failure analysis, methods and tools of reliability testing. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Summary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis; basics and properties of instruments; quality assurance of technical systems (introduction); introduction to stochastic processes; reliability analysis; component selection and qualification; maintainability analysis (introduction); design rules for reliability, maintainability, reliability tests (introduction). | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Comprehensive copy of transparencies | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | Reliability Engineering: Theory and Practice, 8th Edition, Springer 2017, DOI 10.1007/978-3-662-54209-5 Reliability Engineering: Theory and Practice, 8th Edition (2017), DOI 10.1007/978-3-662-54209-5 | ||||||||||||||||||||||||||||||||||||||||||||
151-0368-00L | Aeroelasticity | W+ | 4 KP | 2V + 1U | M. Righi | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in die Grundlagen und Methoden der Aeroelastik. Überblick über die wichtigsten statischen und dynamischen Phänomene, die aus der Kopplung zwischen Strukturkräften und aerodynamischen Lasten entstehen. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Vorlesung soll ein physikalisches Grundverständnis für gekoppelte Strömung-Struktur-Phänomene vermitteln. Ausserdem soll den Teilnehmern ein Überblick über die wichtigsten Phänomene der statischen und der dynamischen Aeroelastik gegeben werden, sowie eine Einführung in die entsprechenden analytischen und numerischen Methoden zur mathematischen Beschreibung und zur Formulierung quantitativen Voraussagen. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Elemente der stationären und instationären Aerodynamik. Auswertung der aerodynamischen Lasten durch analytische (Reduced-Order Models, Indicial Functions), experimentelle (Wind Tunnel) und numerische Ansätze (CFD) Statische Aeroelastik: Berechnung der statischen aeroelastischen Antwort einfacher Systeme, Ruderwirksamkeit und -umkehr. Auswirkung der Flügelpfeilung auf statische aeroelastische Phänomene, aeroelastische Divergenz am starren Streifenmodell, aeroelastische Divergenz eines kontinuierlichen Flügels. Dynamische Aeroelastik: Berechnung der dynamischen aeroelastischen Antwort einfacher Systeme. Kinematik des Biegetorsionsflatterns. Dynamik des starren Flügelstreifenmodells. Dynamik des Biegetorsionsflatterns. Numerische Aeroelastik (Test Cases aus den letzten AIAA Aeroelastic Prediction Workshops). Entwicklung von Reduced-Order-Models aus CFD Daten (zT durch ML). Aeroelastische Antwort von modernen Flugzeugen: Wirkung von Steuerflächen und Systemen (Aeroservoelastik), active-controlled Aircraft, Flutter-suppression Systems, Zertifizierung (EASA, FAA). Planung und Durchführung von Windkanal-Versuchen von aeroelastischen Modellen. Durchführung von einem Experiment im ETH-WK. Einblick in Phenomäne wie Limit-Cycle Oscillations (LCO) und Panel-Flutter. | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Skript (auf Englisch) vorhanden. | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | Bispilnghoff Ashley, Aeroelasticity Abbott, Theory of Wing sections, Y. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions. | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||||||||
151-0532-00L | Nonlinear Dynamics and Chaos I | W+ | 4 KP | 4G | G. Haller | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Basic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | (1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data. (2) Near equilibrium dynamics: Linear and Lyapunov stability (3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations (4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles. (5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Written and typed lecture notes are available in Moodle, as well as recorded lecture videos from an earlier year. | ||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | - Prerequisites: Analysis, linear algebra and a basic course in differential equations. . | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||||||||
151-0215-00L | Fundamentals of Acoustics Number of participants limited to 40. | W+ | 4 KP | 3G | N. Noiray, B. Van Damme | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides an introduction to acoustics. It focusses on fundamental phenomena of airborne and structure-borne sound waves. The lecture combines theoretical principles with practical insights and interpretations. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | First, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadrupole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, coherent vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods used to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures. | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts will be distributed during the class | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | Books will be recommended for each chapter | ||||||||||||||||||||||||||||||||||||||||||||
151-0213-00L | Fluid Dynamics with the Lattice Boltzmann Method | W+ | 4 KP | 3G | I. Karlin | ||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations. During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on. Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course). The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others. Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course builds upon three parts: I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples. II Theoretical basis of statistical mechanics and kinetic equations. III Lattice Boltzmann method for real-world applications. The content of the course includes: 1. Background: Elements of statistical mechanics and kinetic theory: Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids. 2. Basics of the Lattice Boltzmann Method and Simulations: Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures. 3. Hands on: Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc). 4. Practical issues of LBM for fluid dynamics simulations: Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy. 5. Microflow: Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations. 6. Advanced lattice Boltzmann methods: Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries. 7. Introduction to LB models beyond hydrodynamics: Relativistic fluid dynamics; flows with phase transitions. | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes on the theoretical parts of the course will be made available. Selected original and review papers are provided for some of the lectures on advanced topics. Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided. | ||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend. |
- Seite 1 von 1