Search result: Catalogue data in Spring Semester 2024
Energy Science and Technology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electives These courses are particularly recommended, other ETH-courses from the field of Energy Science and Technology at large may be chosen in accordance with your tutor. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Flows and Processes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0206-00L | Hydraulic Engineering | W | 5 credits | 4G | R. Boes | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Hydraulic systems, schemes and structures (e.g. dams, intakes, conduits, pipes, open channels, weirs, powerhouses, locks), fundamentals in river engineering and natural hazards | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In the course "Hydraulic Engineering", the competencies of process understanding and system understanding are taught, applied and examined. Concept development is taught and applied. The course aims at knowledge of hydraulic systems and their main hydraulic components and structures; competencies in planning and design of hydraulic structures with regard to serviceability and reliability are teached. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Hydraulic systems: High-head storage power plants and low-head run-of-river power plants. Weirs: weir and gate types, hydraulic design. Intakes: intake types, desilting facilities and sand traps. Channels: design, open and closed channels. Closed conduits: linings, hydraulic design of pressure tunnels and shafts. Dams and reservoirs: dam types, appurtenant structures River engineering: flow computation, sediment transport, engineering and environmental measures. Natural hazards: types, basics of countermeasures Inland navigation: channels and locks. Exercises in written form, exercises in hydraulic and computer laboratory. Field trip. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Comprehensive script "Hydraulic Engineering" in German. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature references are given at the end of each chapter of the script. Recommended books: see course description in German | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | strongly recommended: basic knowledge in hydraulics (fluid mechanics) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0588-01L | Re-/Source the Built Environment | W | 3 credits | 2S | G. Habert, M. Posani, E. Zea Escamilla | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course focuses on material choice and energy strategies to limit the environmental impact of construction sector. During the course, specific topics will be presented (construction technologies, environmental policies, social consequences of material use, etc.). The course aims to present sustainable options to tackle the global challenge we are facing and show that "it is not too late". | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the lecture series, the students are aware of the main challenges for the production and use of building materials. They know the different technologies/propositions available, and environmental consequence of a choice. They understand in which conditions/context one resource/technology will be more appropriate than another | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | A general presentation of the global context allows to identify the objectives that as engineer, material scientist or architect needs to achieve to create a sustainable built environment. The course is then conducted as a serie of guest lectures focusing on one specific aspect to tackle this global challenge and show that "it is not too late". The lecture series is divided as follows: - General presentation - Notion of resource depletion, resilience, criticality, decoupling, etc. - Guest lectures covering different resources and proposing different option to build or maintain a sustainable built environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | For each lecture slides will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and USYS. No lecture will be given during Seminar week. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0160-00L | Fuel Cycle and Waste Management Note: The previous course title until FS22 "Nuclear Energy Systems". | W | 4 credits | 2V + 1U | R. Eichler, S. Churakov, O. Leupin, L. Robers | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Physical and chemical aspects of the synthesis and distribution of uranium, radioactive decay and detection, uranium production, uranium enrichment, nuclear fuel production, reprocessing of spent fuel, nuclear waste disposal and final deep geological repository | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students get an overview on the physical and chemical fundamentals, the technological processes and the environmental impact of the full energy conversion chain of nuclear power generation including final repository. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | (1-5) survey on the cosmic and geological origin of uranium and its deposits, (radio-) chemical fundamentals relevant for uranium handling, radiaoctive decay and its detection; (6-9) methods of uranium mining, separation of uranium from the ore, enrichment of uranium (diffusion cells, ultra-centrifuges, alternative methods), chemical conversion uranium oxid - fluorid - oxid, fuel rod fabrication processes, fuel reprocessing (hydrochemical, pyrochemical) including modern developments of deep partitioning as well as methods to treat and minimize the amount and radiotoxicity of nuclear waste. (10-13) nuclear waste disposal, waste categories and origin, geological and engineered barriers in deep geological repositories, the project of a deep geological disposal for radioactive waste in Switzerland | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides will be distributed as handouts and in digital form | |||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0206-00L | Energy Systems and Power Engineering | W | 4 credits | 2V + 2U | R. S. Abhari, A. Steinfeld | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Vorlesungsunterlagen werden verteilt | |||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0207-00L | Theory and Modeling of Reactive Flows | W | 4 credits | 3G | C. E. Frouzakis, I. Mantzaras | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Theory of combustion with numerical applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | NEW course | |||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0234-00L | Electrochemical Energy Systems | W | 4 credits | 4G | M. Lukatskaya | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on energy storage devices like batteries and supercapacitors, and energy conversion systems. It provides a detailed introduction to core electrochemical processes and fundamental concepts, with an emphasis on real-world applications. The course aims to build a strong theoretical foundation and offer practical insights into electrochemical energy systems and technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is for students to understand the fundamental principles and theories behind electrochemical processes, analyze current scientific literature, and explain real electrochemical data. Key objectives of this course are: 1. Explain the working principles of electrochemical energy storage systems. 2. Calculate the theoretical capabilities of energy storage systems. 3. Explain the discrepancies between theoretical and real-world performance of energy storage systems. 4. Understand and explain what information can be obtained from the analytical electrochemical methods. 5. Analyze and explain relevant seminal and modern research literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0440-00L | Physical Electrochemistry and Electrocatalysis Does not take place this semester. | W | 6 credits | 3G | T. Schmidt | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes and introduction into the technologies (e.g., fuel cell, electrolysis), electrochemical methods (e.g., voltammetry, impedance spectroscopy), mass transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Providing an overview and in-depth understanding of Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes (fuel cell, electrolysis), electrochemical methods and mass transport during electrochemical reactions. The students will learn about the importance of electrochemical kinetics and its relation to industrial electrochemical processes and in the energy seactor. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Review of electrochemical thermodynamics, description electrochemical kinetics, Butler-Volmer equation, Tafel kinetics, simple electrochemical reactions, electron transfer, Marcus Theory, fundamentals of electrocatalysis, elementary reaction processes, rate-determining steps in electrochemical reactions, practical examples and applications specifically for electrochemical energy conversion processes, introduction to electrochemical methods, mass transport in electrochemical systems. Introduction to fuel cells and electrolysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be handed out during the Semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Physical Electrochemistry, E. Gileadi, Wiley VCH Electrochemical Methods, A. Bard/L. Faulkner, Wiley-VCH Modern Electrochemistry 2A - Fundamentals of Electrodics, J. Bockris, A. Reddy, M. Gamboa-Aldeco, Kluwer Academic/Plenum Publishers | |||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0507-00L | Hands-on Electrochemistry for Energy Storage and Conversion Applications Prerequisites: previous attendance of at least one of the following courses is mandatory: - 529-0659-00L Electrochemistry: Fundamentals, Cells & Applications - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 151-0234-00L Electrochemical Energy Systems | W | 6 credits | 6P | L. Gubler, E. Fabbri, J. Herranz Salañer, S. Trabesinger | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide the students with hands-on laboratory experience in the field of electrochemistry, specifically within the context of energy related applications (i.e., Li-ion batteries, fuel cells and water electrolyzers). | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Solidify the students’ theoretical knowledge of electrochemistry; apply these concepts in the context of energy-related applications; get the students acquainted with different electrochemical techniques, as well as with application-relevant materials and preparation methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Day 1: Course introduction, electrochemistry refresher Day 2: Rotating disk electrode (RDE) studies Days 3 - 8: 3 x 2-day blocks of laboratory work (rotating assignments): - Lithium-ion batteries - Polymer electrolyte fuel cells - Water electrolysis cells Day 9: finalize data processing, prepare for oral presentation and exam Day 10 (at ETH): presentations and exam | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | - The course material will be prepared and provided by the lecturers. - Students should bring their own laptop - Origin will be used for data treatment demonstration | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | References to academic publications of specific relevance to the experiments to be performed will be included within the courses’ script | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | - Course language is english. - The course will take place at the Paul Scherrer Institut, 5232 Villigen PSI (www.psi.ch). - The number of participants is limited to 15 (Master level students have priority over PhD students). - Students are encouraged to bring their own protective gear for the work in the lab (lab coat, safety goggles). If needed, this can also be provided, please contact the organizers in advance. - Participants need to be insured (health / accident insurance). - On-site accommodation at the PSI guesthouse (www.psi.ch/gaestehaus) is possible and will be arranged. Admittance criterion: previous attendance of at least one of the following courses is mandatory: - 529-0659-00L Electrochemistry: Fundamentals, Cells & Applications - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 151-0234-00L Electrochemical Energy Systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0948-00L | Solid State Chemistry Enrollment only possible until 06.02.2024 Participants who have passed the course "Inorganic Chemistry II" will be favoured. | W | 6 credits | 10P | M. Kovalenko, M. Kotyrba, S. Yakunin | |||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction to single crystal growth with the Bridgman-Stockbarger technique and thin film preparation using melt processing and evaporation deposition. Physical characterization of single crystals and thin films. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The practical laboratory course gives an insight into the growth of single crystals and their applications. Focus lies on the growth of semiconductor crystals, thin film preparation (melt & evaporation technique) of semiconducting materials and the measurement of their physical (optical & electronic) properties. Additionally, the complete work is documented in a detailed scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The growth of perovskite (CsPbBr3) semiconductor crystals using the Bridgman-Stockbarger technique as a model system for single crystals grown from the melt. Alternatively thin films derived over melt processing or via evaporation deposition are prepared. The preparation of crystals for physical measurements through cutting and polishing. Measuring optical characteristics (absorption) as well as electronic properties, including current-voltage (IV) measurements, time-of-flight, charge carrier recombination, charge extraction efficiencies, noise measurement and photodetection. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Electronic version of the script will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | All references in the script will be provided in .pdf-form, no other sources are needed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Every participant works on 14 afternoons in a row (Tuesday - Thursday, 13:00 - 18:00) during the semester after being assigned to a group of two or three participants depending on the overall amount of participants. No further presence is demanded. Presence dates: 27.02. - 27.03.2024 28.02. - 28.03.2024 12.03. - 17.04.2024 20.03. - 25.04.2024 28.03. - 08.05.2024 11.04. - 16.05.2024 24.04. - 29.05.2024 25.04. - 30.05.2024 Preferences for the personal assignment can be considered. Electronic enrollment is mandatory. (except ETH-external participants). Safety concept: https://chab.ethz.ch/studium/bachelor1.html By enrolling in this lab course, students confirm to thoroughly study all safety information and follow instructions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
|
- Page 1 of 1