# Search result: Catalogue data in Autumn Semester 2023

Energy Science and Technology Master | ||||||||||||||||||||||||||||||||||||||||||

Electives These courses are particularly recommended, other ETH-courses from the field of Energy Science and Technology at large may be chosen in accordance with your tutor. | ||||||||||||||||||||||||||||||||||||||||||

Energy Flows and Processes | ||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

151-0123-00L | Experimental Methods for Engineers | W | 4 credits | 2V + 2U | D. J. Norris, F. Coletti, M. Lukatskaya, A. Manera, A. Shapiro, O. Supponen, M. Tibbitt | |||||||||||||||||||||||||||||||||||||

Abstract | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups. | |||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition, and processing. Study of applications in the laboratory. Fundamentals of scientific documentation and reporting. | |||||||||||||||||||||||||||||||||||||||||

Content | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, and process engineering). Student participation in ~6 laboratory experiments (study groups of ~3 students, dependent on the number of course participants and available experiments). Lab reports for all attended experiments have to be submitted by the study groups. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Presentations, handouts, and instructions are provided for each experiment. | |||||||||||||||||||||||||||||||||||||||||

Literature | Holman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2 | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||

151-0163-00L | Nuclear Energy Conversion | W | 4 credits | 2V + 1U | A. Manera | |||||||||||||||||||||||||||||||||||||

Abstract | Phyiscal fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, converion and breeding | |||||||||||||||||||||||||||||||||||||||||

Objective | Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows. | |||||||||||||||||||||||||||||||||||||||||

Content | Nuclear physics of fission and chain reaction. Themodynamics of nuclear reactors. Design of the rector core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breaders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of rector technology. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Hand-outs will be distributed. Additional literature and information on the website of the lab: Link | |||||||||||||||||||||||||||||||||||||||||

Literature | S. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V. R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier | |||||||||||||||||||||||||||||||||||||||||

151-0209-00L | Renewable Energy Technologies | W | 4 credits | 3G | A. Bardow | |||||||||||||||||||||||||||||||||||||

Abstract | Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects. | |||||||||||||||||||||||||||||||||||||||||

Objective | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||

151-0216-00L | Wind Energy | W | 4 credits | 2V + 1U | N. Chokani | |||||||||||||||||||||||||||||||||||||

Abstract | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics. | |||||||||||||||||||||||||||||||||||||||||

Objective | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. | |||||||||||||||||||||||||||||||||||||||||

Content | This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines. | |||||||||||||||||||||||||||||||||||||||||

151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | W | 4 credits | 4G | G. Sansavini, F. J. Baader, A. Bardow, S. Moret | |||||||||||||||||||||||||||||||||||||

Abstract | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||

Objective | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||

Content | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||

151-0245-00L | Energy Systems Analysis: an Introduction and Overview with Applications | W | 4 credits | 2V + 2U | R. McKenna | |||||||||||||||||||||||||||||||||||||

Abstract | This lecture is an introductory (advanced Bachelor or beginner Master level) course on Energy Systems Analysis. It provides students with an overview of the field and an understanding of relevant tools and methods, along with their strengths and weaknesses. | |||||||||||||||||||||||||||||||||||||||||

Objective | - Analyse energy technologies with respect to different criteria/characteristics - Discuss and debate the pros and cons of different ESA models/approaches (for specific applications) - Explain the system-level interdependencies/interconnections within the energy system - Evaluate the effect of uncertainties and “the human dimension” on ESA and scenarios | |||||||||||||||||||||||||||||||||||||||||

Content | The course provides an introduction and overview to the most well-established models and methods of energy systems analysis, in each case introducing students to the theory and assumptions of the method, strengths and weaknesses of the specific approach, and case studies for exemplary energy technologies and systems. The students are taught to understand and will be able to apply the basic principles of these methods in the context of targeted assignments relating to real-world energy systems. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | No but slides are provided before the lectures and videos recorded. | |||||||||||||||||||||||||||||||||||||||||

Literature | Will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | No specific prerequisities, some background in energy-related topics in the Bachelor would be beneficial. | |||||||||||||||||||||||||||||||||||||||||

151-0251-00L | Principles, Efficiency Optimization and Future Applications of IC Engines | W | 4 credits | 2V + 1U | Y. Wright, P. Soltic | |||||||||||||||||||||||||||||||||||||

Abstract | Future Relevance of IC engines for transportation and Power-on-Demand. Characteristic performance parameters, operating maps and duty cycles. Thermodynamic cycles and energetic optimization. In-cylinder flows, convective and radiative heat transfer, combustion modes, boosting and simulation methods. Hybrid powertrains, decentralized power/heat cogeneration and use of renewable/e-fuels. | |||||||||||||||||||||||||||||||||||||||||

Objective | The students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized electricity (and heat) generation. To this end, they learn about simulation methods and related experimental techniques for performance assessment in a combination of lectures and exercises. | |||||||||||||||||||||||||||||||||||||||||

Content | This lecture aims at introducing the students to the working principles and efficiency optimization methods for Internal Combustion (IC) engines which are expected to continue to play a very important role in transportation (long-haul heavy duty, marine) and decentralized combined heat and power generation. Following an overview of different applications and powertrains, the course will focus on the following topics: First, a generic overview of the history of IC-Engines is given, and the basic dimensions and specific engine-relevant terminology are introduced. Next, operating maps for different duty cycles are discussed, highlighting the benefits of individual powertrain configurations for different usage scenarios. The high-pressure thermodynamic process and combustion-induced heat release are analyzed in detail and the design of the combustion processes is discussed in view of further optimization of the energy conversion efficiency. The concept of boosting, its challenges and potential are also presented. In addition, flow field characteristics, convective and radiative heat transfer and combustion modes (Otto, Diesel and “multi-mode” cycles) will be discussed along with possible simulation methods. The course consists of lectures combined with exercises. In addition, several invited guest talks will be held by representatives from Swiss industrial companies active in this field. Provided the pandemic measures allow, visits to different engine test facilities are further envisioned. | |||||||||||||||||||||||||||||||||||||||||

Literature | J. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | This course provides background for the course 151-0254-00L “Environmental Aspects of Future Mobility” held in the Spring Semester, where the focus is on emission formation and minimization, exhaust gas after treatment systems and potentials of future synthetic/e-fuels in IC engines; all given in the broader context of a future mobility/transportation options (battery electric, hybrids, fuel cells etc.) and transformation pathways towards sustainability. | |||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||

151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | W | 4 credits | 2V + 1U + 2A | N. Noiray, F. Ernst, C. E. Frouzakis | |||||||||||||||||||||||||||||||||||||

Abstract | This course will provide an introduction to the fundamentals and the applications of combustion in energy conversion and nanoparticles synthesis. The content is highly relevant for technologies which cannot be electrified such as long distance aviation and shipping, and which will more and more rely on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||

Objective | The main learning objectives of this course are: 1. Understand the thermodynamic, fluid-dynamic and chemical kinetics fundamentals of combustion processes. 2. Predict relevant parameters for combustion systems, such as laminar and turbulent flame speeds, adiabatic flame temperature or quenching distance. 3. Understand the causal relations of relevant combustion parameters such as the pressure influence on the laminar flame speed. 4. Analyze the challenges of developing sustainable combustion technologies based on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||

Content | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, development of sustainable combustion technologies for power generation, shipping and aviation. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||||||||||||||||||||||||||||||||||||||

Literature | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||||||||||||||||||||||||||||||||||||||

151-0567-00L | Engine Systems | W | 4 credits | 3G | C. Onder | |||||||||||||||||||||||||||||||||||||

Abstract | Introduction to current and future engine systems and their control systems | |||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions. | |||||||||||||||||||||||||||||||||||||||||

Content | Physical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.). Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Introduction to Modeling and Control of Internal Combustion Engine Systems Guzzella Lino, Onder Christopher H. 2010, Second Edition, 354 p., hardbound ISBN: 978-3-642-10774-0 | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Combined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups | |||||||||||||||||||||||||||||||||||||||||

151-0569-00L | Vehicle Propulsion Systems | W | 4 credits | 3G | C. Onder, P. Elbert | |||||||||||||||||||||||||||||||||||||

Abstract | Introduction to current and future propulsion systems and the electronic control of their longitudinal behavior | |||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to methods of system optimization and controller design for vehicles. Understanding the structure and working principles of conventional and new propulsion systems. Quantitative descriptions of propulsion systems | |||||||||||||||||||||||||||||||||||||||||

Content | Understanding of physical phenomena and mathematical models of components and subsystems (manual, automatic and continuously variable transmissions, energy storage systems, electric drive trains, batteries, hybrid systems, fuel cells, road/wheel interaction, automatic braking systems, etc.). Presentation of mathematical methods, CAE tools and case studies for the model-based design and control of propulsion systems with the goal of minimizing fuel consumption and emissions. | |||||||||||||||||||||||||||||||||||||||||

Lecture notes | Vehicle Propulsion Systems -- Introduction to Modeling and Optimization Guzzella Lino, Sciarretta Antonio 2013, X, 409 p. 202 illus., Geb. ISBN: 978-3-642-35912-5 | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Lectures of Prof. Dr. Ch. Onder and Dr. Ph. Elbert are also possible to be held in German. | |||||||||||||||||||||||||||||||||||||||||

529-0613-01L | Process Simulation and Flowsheeting | W | 6 credits | 3G | G. Guillén Gosálbez | |||||||||||||||||||||||||||||||||||||

Abstract | This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems. | |||||||||||||||||||||||||||||||||||||||||

Objective | This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills: - Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes. - Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior. - Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results. - Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers. | |||||||||||||||||||||||||||||||||||||||||

Content | Overview of process simulation and flowsheeting: - Definition and fundamentals - Fields of application - Case studies Process simulation: - Modeling strategies of process systems - Mass and energy balances and degrees of freedom of process units and process systems Process flowsheeting: - Flowsheet partitioning and tearing - Solution methods for process flowsheeting - Simultaneous methods - Sequential methods Process optimization and analysis: - Classification of optimization problems - Linear programming, LP - Non-linear programming, NLP - Mixed-integer linear programming, MILP - Mixed-integer nonlinear programming, MINLP Commercial software for simulation (Aspen Plus): - Thermodynamic property methods - Reaction and reactors - Separation / columns - Convergence, optimisation & debugging | |||||||||||||||||||||||||||||||||||||||||

Literature | An exemplary literature list is provided below: - Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design, Prentice Hall International PTR (1997). - Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988). - Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering Series (2001). - Haydary, J. Chemical Process Design and Simulation, Wiley (2019). - Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis, analysis, and evaluation, John Wiley & Sons, Inc. (2010). - Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009). - Smith, R. Chemical process design and integration, Wiley (2005). - Turton, R., A. Shaeiwitz, Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical Processes, Prentice Hall (2013). | |||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required. |

- Page 1 of 1