Suchergebnis: Katalogdaten im Herbstsemester 2023

Erdwissenschaften Master Information
Vertiefung in Geology
Wahlpflichtmodule Geology
Innerhalb der Majors Geology sind mindestens zwei Wahlpflichtmodule zu absolvieren.
Structural Geology
Structural Geology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4132-00LField Course IV: Alpine Field Course
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only.
W+3 KP6PW. Behr, V. Picotti
Kurzbeschreibung
Lernziel
Voraussetzungen / BesonderesStudents who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter.
Deadline for motivation letter: 31 October 2018

Final decision 20 November 2018

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
Structural Geology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4111-00LExperimental Rock Physics and Deformation Belegung eingeschränkt - Details anzeigen W3 KP2GL. Tokle, C. Madonna, A. S. Zappone
KurzbeschreibungWe illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field.
LernzielThe objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale .

Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment.

For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating.
For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data.

The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling
InhaltThe course will focus on research-based term project, lectures will alternate with laboratory demonstrations.

We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties:
- permeability;
- elastic properties for seismic interpretations;
- anisotropy of the above physical properties.
We will measure some of those parameters in laboratory and discuss real case studies and applications.

Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures.
In laboratory we will show:
- Experimental deformation rigs (gas, fluid and solid confining media);
- Main part of the apparatus (mechanical, hydraulic, heating system, data logging);
- Calibration of an apparatus (distortion of the rig; transducers calibration);
- Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests);
Voraussetzungen / BesonderesThe course of Structural Geology (651-3422-00L) is highly recommended before attending this course.
Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography.

In doubt, please contact the course responsible beforehand.
651-3521-00LTectonicsW3 KP2VW. Behr, S. Willett
KurzbeschreibungUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss. Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
LernzielUmfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss.
Abschätzung der Mechanismen und Kräfte, welche für Plattenbewegungen im allgemeinen und für spezielle großräumige Strukturen (ozeanische Becken und Zyklus der ozeanischen Lithoshpäre, Gebirgssysteme und kontinentales Wachstum, usw.) verantwortlich sind, basierend auf theoretischen und experimentellen Informationen.
Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System.
InhaltPlattentektoniksysteme: System Mantel-Lithosphärenplatten, drei Arten von Plattengrenzen, ihre Rollen und Charakteristika, Zyklus der ozeanischen Lithosphäre, Kratone, Wachstum der Kontinente und Bildung der Superkontinente. Rheologie der geschichteten Lithosphäre und des oberen Mantels.
Obduktionssysteme
Kollisionssysteme
Extensionssysteme
Entwicklung der Becken
Passive and aktive Kontinentalränder
LiteraturCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
  •  Seite  1  von  1