Suchergebnis: Katalogdaten im Herbstsemester 2023
Bauingenieurwissenschaften Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0249-00L | Hydraulic Engineering III Voraussetzung: 101-0247-01L Wasserbau II oder gleichwertige Lehrveranstaltung. | W | 3 KP | 2S | R. Boes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lecture focuses on selected topics in hydraulic engineering, water management and aquatic ecology relating to hydropower and flood protection projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The overarching goal of the course is to broaden and enhance knowledge on special aspects in hydraulic engineering and its links to aquatic ecology and to understand the procedures and the planning sequence of large-scale projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Selected topics in hydraulic engineering will be focused on, e.g. dam safety, materials in dam construction, possible problems at reservoirs like hazards from impulse waves, the hydraulics of spillways and intake structures at dams and weirs and the link between hydropower and ecology. Another focus will be put on typical approaches and procedures in the planning process of large-scale hydraulic engineering projects at the national and international level. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes will be available online. Parts of the lectures will also be covered by a manuscript that will available in electronic form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | will be specified in the lecture and in a written manuscript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | External speakers will be involved to present current topics and projects in Switzerland and abroad. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0608-00L | Design-Integrated Life Cycle Assessment | W | 3 KP | 2G | G. Habert, A. Rodionova | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Currently, Life Cycle Assessment (LCA) is applied as an ex-post design evaluation of buildings, but rarely used to improve the building during the design process. The aim of this course is to apply LCA during the design of buildings by means of a digital, parametric tool. The necessary fundamentals of the LCA method will be taught following a lecture on demands approach. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course will follow two main objectives and a third optional objective, depending on the design projects the students’ choose. At the end of the course, the students will: 1. Know the methodology of LCA 2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects 3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will be structured into two parts, each making up about half of the semester. Part I: Exercises with lectures on demand The first six individual courses will follow the “lectures on demand” approach. Small “hands-on” exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part: 1) LCA basic introduction 2) System boundaries, functional unit, end of life 3) Carbon budget and LCA benchmarks 4) BIM-LCA, available calculation tools and databases 5) Integrated analysis of environmental and cost assessment 6) Bio-based carbon storage Part II: Project-based learning In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given: 1) Introduction to Rhinoceros 6 and 7 2) Introduction to grasshopper 3) Integrated assessment tools (ladybug tools) 4) Introduction to in-house grasshopper plugin for LCA analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | As the course follows a lecture on demand approach, the lecture slides will be provided after each course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The students are expected to work out of class as well. The course time will be used by the teachers to answer project-specific questions. The lecture series will be conducted in English and is aimed at students of master's programs, particularly in civil engineering and MIBS. No lecture will be given during Seminar week. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0329-00L | Untertagbau III | W | 4 KP | 2G | G. Anagnostou, E. Pimentel, M. Ramoni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vertiefung von ausgewählten Themen des Untertagbaus sowie Üben des konzeptionellen Vorgehens bei komplexen Problemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vertiefung der Kenntnisse in ausgewählten Themen des Untertagbaus. Erlernen des konzeptionellen Vorgehens bei komplexen Problemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Kavernenbau: Anordnung, Bauweisen, Sicherung. Schachtbau im Fels: Bauweisen, Sicherung. Städtischer Tunnelbau: Randbedingungen, Systemwahl, Linienführung, Entwurf und Konstruktion. Feldmessungen im Fels- und Untertagbau: Messprinzipien, Planung, Anwendungen, Interpretation. Tagbautunnel: Statische Modellbildung, Dimensionierung. Anhand von ausgewählten, aktuellen Fallbeispielen wird in kleinen Gruppen das Vorgehen bei der konzeptuellen Bearbeitung komplexer, aussergewöhnlicher Probleme geübt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Autographieblätter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Empfehlungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Besuch der Vorlesungen "Untertagbau" aus dem ETH-Bachelor-Studiengang und "Untertagbau I", "Untertagbau II" aus dem ETH-Master-Studiengang. Diese Lehrveranstaltung wird bis und mit HS24 weiterhin auf Deutsch angeboten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0139-00L | Scientific Machine and Deep Learning for Design and Construction in Civil Engineering ![]() | W | 3 KP | 4G | M. A. Kraus, D. Griego | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will present methods of scientific machine and deep learning (ML / DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering. Upon completion of the course, the students will be able to: 1. understand main ML background theory and methods 2. assess a problem and apply ML and DL in a computational framework accordingly 3. Incorporating scientific domain knowledge in the SciML process 4. Define, Plan, Conduct and Present a SciML project | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment. The topics to be covered are: 1. Fundamentals of Machine and Deep Learning (ML / DL) 2. Incorporation of Domain Knowledge into ML and DL 3. ML training, validation and testing pipelines for academic and research projects A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a "hands-on" feel for the course topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Suggested Reading: Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong Mathematics for Machine Learning K. Murphy. Machine Learning: a Probabilistic Perspective. MIT Press 2012 C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007 S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016 O. Martin: Bayesian analysis with python. Packt Publishing Ltd, 2016 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Familiarity with MATLAB and / or Python is advised. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0357-00L | Theoretical and Experimental Soil Mechanics ![]() Prerequisites: Mechanics I, II and III. The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received. | W | 6 KP | 4G | I. Anastasopoulos, R. Herzog, E. Korre, A. Marin, L. Sakellariadis, M. Schneider | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Overview of soil behaviour Explanation of typical applications: reality, modelling, lab tests with transfer of results to practical examples Consolidation theory and typical applications Triaxial tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory Introduction to physical modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | (1) Extend knowledge of theoretical approaches that can be used to describe soil behaviour. (2) Offer the opportunity to perform hands on element tests required for constitutive model calibration. (3) Enable students to select an appropriate constitutive model and calibrate it using element test performed in the lab. (4) Enable students to carry out FE analyses for realistic geotechnical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of soil behaviour Discussion of general gaps between basic theory and soil response Stress paths in practice & in laboratory tests Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice Triaxial & direct shear tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory Introduction to physical modelling with emphasis on centrifuge modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Printed script with web support Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | https://moodle-app2.let.ethz.ch/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Pre-requisites: Fundamental knowledge of solid and soil mechanics. The theoretical part of the course will be covered by problem-based lectures. The experimental part will be covered by hands-on element tests performed by the students in the laboratory. These experimental results will be instrumental in the calibration of advanced soil constitutive models. The connection between the experimental and theoretical parts of the course will be facilitated by means of numerical investigations (i.e, FE analyses), including the selection and calibration of relevant constitutive models. The numerical investigations shall be documented by the students in a final report. Laboratory equipment will be available for 60 students. Students registered for the Geotechnics Specialty in Masters will be given priority as follows: (1) 2nd year students; (2) 1st year students, (3) doctoral students taking the class for their qualifying exam; Further students will be admitted on a first-come-first-served basis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0120-00L | Structural Glass Design and Facade Engineering ![]() | W | 3 KP | 3G | V.‑A. Silvestru | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course gives an introduction to structural glass design and related façade engineering aspects. It will focus on the properties of the material glass and glass products, as well as on the structural design of glass elements and their supporting systems and connections. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successful completion of the course, students will be able to: -Understand and apply the fundamentals of the material glass and glass products, the basic principles for using glass as a load-carrying building material for structural applications and the types of connections used for glass elements; -Recognize requirements for glass elements depending on their application area and chose the appropriate glass products and assemblies accordingly; -Structurally design out-of-plane loaded glass elements based on available standards, both by hand calculations and specific software applications; -Apply selected approaches for the structural design of in-plane loaded glass elements; -Select suitable supporting systems (post-and-beam façade, curtain wall, etc.) and connections (point fixings, brackets, etc.) for the glass elements and structurally design them. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course introduces civil engineering students to structural glass design and related façade engineering aspects. It aims to provide the students the knowledge required in engineering offices to design glass elements but at the same time, the necessary fundamentals for later performing research in this field. To achieve this, the course includes lectures, design exercises and a design project. Lectures: The lectures will cover the following contents: -Production methods and properties of the material glass and glass products and their structurally relevant properties (annealed glass, thermally tempered glass, chemically tempered glass, laminated glass, insulating glass, curved glass); -Connection principles and types for glass elements (mechanical fixing, adhesive bonding); -Requirements for glass elements depending on the application area (vertical glazing, overhead glazing, walk-on glazing, barrier glazing); -Structural design of glass elements based on standards and research results (out-of-plane loaded glass elements and in-plane loaded glass elements); -Typologies and design of structural systems for transparent façades; -Requirements and functions for transparent facades. Design exercises: The principles and methods presented in the lectures are practiced with the students in design exercises. Hand calculation methods and their limitations as well as the software for structural glass design SJ Mepla are used for out-of-plane loaded glass elements. For in-plane loaded glass elements, the specifics of numerical calculation procedures are exemplified with the software Abaqus. Design project: The students will consolidate the knowledge gained in the theory-lectures and in the design exercises by working on a small design task (e.g. a glass canopy, a glass façade, a glass pavilion) in the form of a group work (ideally groups of 2-3 students). Within this task, the students will: conceptually design the structure and selected connection details; identify requirements for the glass elements and define their assembly; structurally design selected glass components, their support systems and their connections. The students will work on the design task in the second half of the semester and will get feedback on their progress in weekly review sessions. At the end of the semester, the groups will submit a project report and give an oral presentation of their projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The lectures are based on lecture slides and handouts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended and supplementary literature: -Schneider J., Kuntsche J., Schula S., Schneider F., Wörner J.-D.: Glasbau – Grundlagen, Berechnung, Konstruktion; Springer Vieweg, Berlin Heidelberg, 2. Auflage, 2016. -Kasper R., Pieplow K., Feldmann M.: Beispiele zur Bemessung von Glasbauteilen nach DIN 18008; Ersnst & Sohn, Berlin, 2016. -Haldimann M., Luible A., Overend M.: Structural Use of Glass; IABSE, 2008. -Knaack U., Klein T., Bilow M., Auer T.: Facades – Principles of Construction; Birkhäuser, Basel, 2007. -Watts A.: Modern construction envelopes – Systems for architectural design and prototyping; Birkhäuser, Basel, 2019. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prior knowledge of structural analysis, especially steel structures is necessary. Prior basic knowledge on the method of finite elements is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0250-00L | Solving Partial Differential Equations in Parallel on GPUs ![]() | W | 4 KP | 3G | L. Räss, S. Omlin, I. Utkin, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims to cover state-of-the-art methods in modern parallel computing on Graphics Processing Unit (GPU), supercomputing and code development with applications to natural sciences and engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | When quantitative assessment of physical processes governing natural and engineered systems relies on numerically solving differential equations, fast and accurate solutions require performant algorithms leveraging parallel hardware. The goal of this course is to offer a practical approach to solve systems of differential equations in parallel on GPUs using the Julia language. Julia combines high-level language conciseness to low-level language performance which enables efficient code development. The course will be taught in a hands-on fashion, putting emphasis on you writing code and completing exercises; lecturing will be kept at a minimum. In a final project you will solve a solid mechanics or fluid dynamics problem of your interest, such as the shallow water equation, the shallow ice equation, acoustic wave propagation, nonlinear diffusion, viscous flow, elastic deformation, viscous or elastic poromechanics, frictional heating, and more. Your Julia GPU application will be hosted on a git-platform and implement modern software development practices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part 1 - Discovering a modern parallel computing ecosystem - Learn the basics of the Julia language; - Learn how to solve diffusion, wave propagation and advection processes; - Implement efficient iterative algorithms; - Get started with software development tools: git, version control. Part 2 - Developing your own parallel algorithms on GPUs - Implement wave propagation and porous convection; - Apply spatial and temporal discretisation (finite-differences, various time-stepper); - Understand the practical challenges of parallel computing: GPUs, multi-core CPUs; - Learn about main simulation performance limiters; - Implement software development tooling: unit tests, continuous integration (CI). Part 3 - Multi-GPU computing projects - Understand the practical challenges of distributed parallel computing on multi-GPUs; - Implement shared (on CPU and GPU) and distributed memory parallelisation (multi-GPUs/CPUs); - Automatise the software tooling using remote runners. Final projects - Apply your new skills in a final project; - Implement advanced physical processes (solid and fluid dynamic - elastic and viscous solutions). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Digital lecture notes, interactive Julia notebooks, online material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Links to relevant literature will be provided during classes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Completed BSc studies. Interest in and basic knowledge of numerics, applied mathematics, and physics/engineering sciences. Basic programming skills (in e.g. Matlab, Python, Julia); advanced programming skills are a plus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0659-01L | Durability and Maintenance of Reinforced Concrete | W | 4 KP | 2V | U. Angst, Z. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | We look at the durability of reinforced concrete structures, covering common deterioration processes such as reinforcement corrosion, frost damage, ASR, etc. The course spans the range from fundamental mechanisms to aspects of engineering practice. New methods and materials for preventative measures, condition assessment and repair techniques are treated. Examples from real cases are shown. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this course you will have profound understanding about: • the different mechanisms of deterioration of concrete structures, in particular reinforcement corrosion • the relevant parameters affecting durability of reinforced concrete (cover depth, concrete quality, moisture, etc.) Furthermore, you will know: • current engineering approaches for durability design (according to standards) and their limitations • refined models for enhanced durability design and service life predictions • preventive measures to improve durability (e.g. stainless steel reinforcement, concrete surface coatings, etc.) • the particular durability challenges with post-tensioned structures and ways to overcome them (electrically isolated tendons) • methods for inspection and condition assessment of existing, ageing structures (including non-destructive techniques and monitoring with sensors) • repair methods for deteriorated concrete structures such as conventional repair and electrochemical methods (in particular cathodic protection) • possible future problems for durability that may arise with modern materials and construction technologies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | • Socio-economic challenges related to ageing infrastructures • Fundamentals of corrosion and durability: Corrosion in concrete (chlorides, carbonation). Passivity and pitting corrosion. Cracking and influence of cracks. • Degradation mechanisms for concrete: sulphate attack, ASR, frost attack. • Inspection and condition assessment: Chloride analyses, carbonation depth, etc. Non-destructive tests, particularly potential mapping to detect corrosion. New developments (for example, monitoring with sensors). • Pre-stressed and post-tensioned structures: problem with existing structures. New systems with polymer ducts / electrically isolated tendons. Monitoring techniques. Applications. • Stainless steel as reinforcing steel for concrete: Different types of stainless steels. Coupling with black reinforcing steel. Examples of application. Life-cycle-costs. • Repair methods: Conventional. Coatings. Corrosion inhibitors. Electrochemical methods, in particular cathodic protection. • Durability design: Prescriptive approach (standards). Service life modeling. Limitations and opportunities. • Modern materials and construction technologies: Discussion of expected implications for the durability of structures today and in the future. Excursion: • We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder Slides of the lectures will be distributed in advance Special handouts and reprints for particular topics will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The course is based on the book Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder Slides of the lectures will be distributed in advance Special handouts and reprints for particular topics will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Form of teaching: The course is a lecture that contains frequent discussion and interaction between students and lecturer. You will see and work on many examples from engineering practice, both during the lectures and in the form of exercises to be solved at home. Report: Each student will work on a small case study and deliver a report during the semester. The report will be graded. Excursion: We generally try to organize a site-visit (depending on availability of construction sites). Presumably, we will visit an installation site of cathodic protection on a concrete structure in the Zurich area. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0677-00L | Concrete Technology | W | 2 KP | 2G | F. Nägele, G. Martinola, T. Wangler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Opportunities and limitations of concrete technology. Commodities and leading edge specialties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Advanced education in concrete technology for civil engineers who are designing, specifying and executing concrete structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Based on the lecture 'Werkstoffe' students receive deep concrete technology training. Comprehensive knowledge of the most important properties of conventional concrete and the current areas of research in concrete technology will be presented. The course covers various topics, including: - concrete components - concrete properties - concrete mix design - production, transport, casting - demoulding, curing and additional protective measures - durability - standards - chemical admixtures - alternative binders - specialty concretes such as: self compacting concrete, fiber reinforced concrete, fast setting concrete - the role of sustainability in concrete technology - new research in digital fabrication with concrete | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides provided for download. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0427-01L | Public Transport Design and Operations | W | 6 KP | 4G | F. Corman, T.‑H. Yan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups. Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport. General structure: general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles Allocation of resources Management of operations Measures of realized operations Improvements of existing services | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides are provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English) Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch) Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English) Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English) Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English) White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0492-00L | Microscopic Modelling and Simulation of Traffic Operations | W | 3 KP | 2G | M. Makridis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces basics of microscopic modelling and simulation of traffic operations, including model design and development, calibration, validation, data analysis, identification of strategies for improving traffic flow performance, and evaluation of such strategies. The aim is to provide the fundamentals for building a realistic traffic-engineering project from beginning to end. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. Students will work in groups on a project that includes a base scenario on a real traffic network. Throughout the semester, along with theoretical concepts, the students will build the base scenario (design, calibration and validation) and will develop alternative scenarios regarding modification on the infrastructure, simulation of in-vehicle technologies and vehicle-to-everything (V2X) communication. Simulations will be implemented in Aimsun software. The students will be asked to understand, analyze, interpret and present traffic properties. Evaluation of alternative scenarios over the same network will be performed. Finally, students will be asked to design, implement, analyze and present a novel proposal, which will be compared with the base scenario. Upon completion of the course, the students will: • Understand the basic models used in microsimulation software (car-following, lane changing, gap acceptance, give ways, on/off-ramps, etc.). • Design a road transport network inside the simulation software. • Understand the basics behind modeling traffic demand and supply, vehicle dynamics, performance indicators for evaluation and network design for a realistic road transport network. • Understand how to design a complete study, implement and validate it for planning purposes, e.g. creating a new road infrastructure. • Make valid and concrete engineering proposals based on the simulation model and alternative scenarios. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In this course, the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic-engineering project with microscopic traffic simulator Aimsun. Microscopic modelling and simulation concepts will include: 1) Car following models 2) Lane change models 3) Calibration and validation methodology Specific tasks for the project will include: 1) Building a model with the simulator Aimsun in order to replicate and analyze the traffic conditions measured/observed. 2) Calibrating and validating the simulation model. 3) Redesigning/extending the model to improve the traffic performance through Aimsun and with/without programming in Python or C++. The course will be based on a project that each group of students will build (design, calibrate, analyze and presentation) across the semester. A mid-term and final presentation of the work will be asked from each group of students. It consists of weekly 2-hour lectures. The students work in pairs on a group project that completes in the end of the semester. The modelling software used is Aimsun and lectures (theory and hands on experience) are taking place in a computer room. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun/Python/C++ is helpful but not mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The lecture notes and additional handouts will be provided before the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Additional literature recommendations will be provided at the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. Previous experience with Aimsun is helpful but not mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0527-10L | Materials and Constructions | W | 3 KP | 2G | G. Habert, M. Posani | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Building materials with a special focus on regenerative materials: earth, bio-based and reuse. Looking at material sourcing, properties and performance, as well as how they are integrated in the buildings (building envelope and detailing). Choice of material is done out of sustainability concern. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Special focus on regenerative materials: earth, bio-based and reuse The students will acquire knowledge in the following fields: Fundamentals of material performance Introduction to durability problems of building facades Materials for the building envelope: - Overview of structural materials and systems: concrete, steel, stone, earth, wood and bamboo - Insulating materials (bio-based vs conventional) Assessment of materials and components behaviour and performance Degradation risks connected to insulation and post-insulation Aspects of sustainability and durability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction Sustainable cement and concrete Earth construction Stone Steel Bamboo Timber construction Building physic and conventional insulation Bio-based insulation and degradation risks with insulation Hygrothermal properties of building materials and dynamic numerical simulations Efficiency and sustainability of modern window glazing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0587-00L | Workshop on Sustainable Building Certification ![]() Findet dieses Semester nicht statt. | W | 3 KP | 2G | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Building labels are used to certify buildings and neighbourhoods in term of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minergie, 2000-Watt-Sites). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this course, the students are able to understand and use the different certification labels. They have a clear view of what the labels take into consideration and what they don't. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Three buildings case study will be presented. Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECO and 2000-Watt-Site (Swiss standards) will be presented and explained by experts. After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels. This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The slides from the presentations will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | All documents for certification labels as well as detail plans of the buildings will be available for the students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0123-00L | Structural Design ![]() | W | 3 KP | 2G | J. Pauli, F. Bertagna, P. Block, D. Tanadini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successfully completing this course the students will able to: 1. Critically question structural design concepts of historical and contemporary references 2. Use graphic statics and strut-and-tie models based on the Theory of Plasticity to describe the load bearing behavior of structures 3. Understand different construction technologies and have an awareness of their potential for structural design 4. Use contemporary digital tools for the design of structures in equilibrium 5. Design an appropriate structural system for a given design task taking into account architectural considerations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester: a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools). Theory: Graphic statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relation between the geometry of a structure and the forces acting in and on it, represented by geometrically dependent form and force diagrams. The course will firstly review the main principles of graphic statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphic statics is then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks. Design Project: Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students' ability to integrate architectural considerations into their structural design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | "Faustformel Tragwerksentwurf" (Philippe Block, Christoph Gengangel, Stefan Peters, DVA Deutsche Verlags-Anstalt 2015, ISBN 978-3-421-04012-1) "Form and Forces: Designing Efficient, Expressive Structures" (Edward Allen, Waclaw Zalewski, October 2009, ISBN: 978-0-470-17465-4) "The art of structures, Introduction to the functioning of structures in architecture" (Aurelio Muttoni, EPFL Press, 2011, ISBN-13: 978-0415610292, ISBN-10: 041561029X) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0267-01L | Numerical Hydraulics | W | 3 KP | 2G | E. Secchi, M. Holzner, D. Vanzo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In the course Numerical Hydraulics the basics of numerical modelling of flows are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated. All methods discussed are applied pratically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generelly available softwares such as BASEMENT for non-steady shallow water flows are used. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Given in lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0186-01L | BIM, Parametric Modeling and Digital Construction for Civil Engineers ![]() | W | 2 KP | 2G | A. Taras, F. Ortiz Quintana, M. Tretheway | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Practice-oriented introduction to BIM working methods for civil engineers. Advantageous applications compared to 2D/3D, especially for digital construction and parametric modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In this course students will see what the BIM method entails for a civil engineer and learn how to create a parametric model yourself incl. associated steel, precast concrete, in-situ concrete, reinforcement and masonry parts based on a practical example. Students will also learn how to automatically create formwork plans, parts lists and data for digital prefabrication and construction sites. They will thus acquire the necessary basis for their future work as engineers and how their work interacts with draughtsmen, designers and master builders in a digital working environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Parametric modelling of steel, precast concrete, in-situ concrete, reinforcements and masonry - Parametric modelling of connections and joints - Defining and evaluating concreting stages - Semi-automatic creation of formwork plans according to sia standards - Automatic export of all necessary models and data for BIM2Field - Insight into BIM2Field applications "Stake out from model" and "Lay reinforcement based on model". | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Available eLearning content PowerPoint slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of construction detailing in steel and concrete, as taught in the BSc courses for steel and concrete structures, is of advantage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0129-00L | Non Destructive Evaluation & Rehabilitation of Existing Structures | W | 3 KP | 2G | E. Chatzi, B. Herraiz Gómez, G. Kocur | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to non destructive evaluation tools and quantitative structural analyses and verifications for condition assessment of existing structures and subsequent decisions on their rehabilitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal is for students to familiarize themselves with the handling of assessment and rehabilitation of existing structures from the perspective of a consulting engineer, following a systematic approach as described in current codes and to further learn how to use new non destructive evaluation technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is organized in two main pillars. The first pillar describes the technologies that are available for non destructive evaluation of structures and delves into description of the principle of operation of such methods (e.g. wave propagation, acoustic emission analysis, tomography). The second pillar, overviews the current implementation of condition assessment processes in codes and standards. Complementary to the topic of structural evaluation, the topic of interventions, rehabilitation and retrofitting of existing structures for different construction materials is next addressed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | J. D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, 425p, 1973 J. L. Rose, Ultrasonic Guided Waves in Solid Media, Cambridge University Press, 506p, 2014 N. Ida and N. Meyendorf, Handbook of Advanced Nondestructive Evaluation, Springer, 1617p, 2019 Swiss Standards SIA 269, 269/1 to 269/7 SIA-Document D 0239 « Existing Structures – Introduction » (in German/French) SIA-Document D 0239 « Existing Structures – Consolidation and Practice » (in German/French) A. Costa, A. Arêde, H. Varum, Strengthening and Retrofitting of Existing Structures, Springer, 339p, 2018 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0328-00L | Granular Mechanics ![]() | W | 4 KP | 3G | J. Gaume | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims to provide a basic understanding of the mechanics and rheology of granular matter. It includes fundamental concepts as well as recent progress in research with main focus on related engineering and natural hazards applications. Small experiments are performed in class to illustrate important processes and state-of-the-art numerical modeling tools are introduced and used. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Granular materials have the ability to sustain stresses like a solid of flow like a fluid depending on the applied solicitation and boundary conditions. This course targets civil, geotechnical and mechanical engineering students, who are interested in discovering the fascinating and sometimes surprising world of granular media, the second most used material in industry and in learning novel modeling approaches. After this class, the students should know how to describe inter-particle interactions at the grain scale, the statics of granular materials, the transition towards fluid states through classical frictional plastic laws and the rheology of granular flows. Furthermore, the students should know the basics of the Discrete Element Method (DEM), its advantage and limitations and should be able to use a commercial software for different types of application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course covers grain-scale interactions, statics and rheology of granular materials based on a mix between classical lectures, on-board developments, presentation of small experiments, analytical and numerical exercises. We present the domains of application of granular mechanics through examples taken from the industry or research. In addition, the Discrete Element Method (DEM) together with state-of-the-art contact models will be presented and used to simulate standard tests such as the granular column collapse, shear flows but also more complex industrial or geophysical problems. Calibration of model parameters based on laboratory experiments will be discussed. The course will not cover aspects related to granular gazes and kinetic theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and lecture notes will be provided on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Books: 1. Granular Media: Between Fluid and Solid by Bruno Andreotti, Olivier Pouliquen, and Yoël Forterre 2. Particulate Discrete Element Modelling: A Geomechanics Perspective by Catherine O'Sullivan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of physics, mechanics and soil mechanics is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
|
Seite 1 von 1