Suchergebnis: Katalogdaten im Herbstsemester 2023

Erdwissenschaften Master Information
Vertiefung in Geology
Pflichtmodul Analytical Methods in Earth Sciences
Es sind je 6KP innerhalb dem Teil A und 6KP innerhalb dem Teil B zu belegen.
Teil A: Mikroskopie Kurse
NummerTitelTypECTSUmfangDozierende
651-4045-00LMicroscopy of Metamorphic Rocks Belegung eingeschränkt - Details anzeigen W+2 KP2GA. Galli
KurzbeschreibungRepetition kristalloptischer Methoden mit dem Durchlicht-Polarisationsmikroskop.
Untersuchung und Beschreibung des metamorphen Mineralbestands und Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen.
Abschätzung von Metamorphosegrad.
Lernziel- Erweiterte Kenntnisse in optischer Mineralogie.
- Beherrschung mikroskopischer Mineral-Bestimmungsmethoden.
- Identifizierung u. Charakterisierung von metamorphen Mineralen
- Gesteinsbeschreibung und korrekte Namengebung aufgrund von modalem Mineralbestand sowie von Struktur und Textur.
- Interpretation der Gesteinsgefüge sowie der Paragenese und der Mineralreaktionen.
Inhalt- Kurze Repetition der wichtigsten optischen Eigenschaften und der mikroskopischen Methoden zur Identifikation der gesteinsbildenden Minerale. Im Besonderen: Auswertung der Interferenzfiguren im konoskopischen Strahlengang.
- Mikroskopieren von Dünnschliffen typischer metam. Gesteine.
- Studium und Beschreibung des metamorphen Mineralbestands und des Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen.
- Abschätzung von Metamorphosegrad anhand der Paragenesen.
- Mengenbestimmung, Angabe der Prozentanteile von Komponenten
- Wissenschaftliche Dokumentation dieser Information: Beschreibungen, Zeichnungen, Mikrophotographie mit verschiedenen Beleuchtungsarten und mit linear- oder zirkularpolarisiertem Licht.
SkriptUnterlagen zur Theorie (in Englisch) und den Übungen werden verteilt
Die Unterlagen zum ETH Bachelor-Kurs im 6. Semester "Mikroskopie der Gesteine" enthalten den Grundstoff.
Literatur- Puhan, D.: Anleitung zur Dünnschliffmikroskopie (1994). (Kristalloptik und praktisches Vorgehen. Durchblättern dieses Buches empfohlen)
- Nesse, W.D.: Introduction to optical mineralogy. 3. Ed. (2004). Die Figuren zur Theorie werden im Kurs verwendet. Das Buch enthält opt. Mineraldaten. Benutzen oder kaufen Sie dieses Buch von Nesse, wenn Sie petrographische Arbeiten an diversen silikatischen Gesteinen durchführen.
- Pichler, H. und Schmitt-Riegraf, C.: Gesteinsbildende Minerale im Dünnschliff (1993). Ein Mineral-Bestimmungsbuch. Empfohlen für petrographische Arbeiten (deutsch). 2. Auflage, ist vergriffen, ist eventuell bei älteren Studenten erhältlich.
- Tröger, W.E.: Optische Bestimmung der gesteinsbildenden Minerale. Teil 1. Bestimmungstabellen (1982). Diese Tabellen sind im Kurs vorhanden.
- Yardley, B.W.D., Mackenzie, W.S. und Guilford, C.: Atlas metamorpher Gesteine und ihrer Gefüge in Dünnschliffen (1992). Dieses Bilderbuch sollten Sie einmal durchblättern. Die Originalausgabe ist in English.
Die Bücher sind auch in der D-ERDW-Bibliothek im Gebäude NO, D-Stock.
Voraussetzungen / BesonderesTeilnehmerzahl 24.
Vorausgesetzt werden Grundkenntnisse in Kristallographie-Mineralogie-Petrographie.
Sie müssen einführende Kurse in Polarisationsmikroskopie, Gesteinsmetamorphose und Strukturgeologie absolviert haben!

Weitere Mikroskopie-Kurse am D-ERDW der ETH Zürich sind:
- Mikroskopieren magmatischer Gesteine, anschliessend an diesen Kurs in der zweiten Semesterhälfte (P. Ulmer, IGP; Inst. für Geochemie und Petrologie)
- Mikroskopieren der Sedimentgesteine (Geol. Institut)
- Mikroskopieren von Erzmineralen, Auflicht-Mikroskopie (Th. Driesner, IGP)
- Mikroskopieren von Mikrostrukturen (Geol. Institut)
651-4047-00LMicroscopy of Magmatic Rocks Belegung eingeschränkt - Details anzeigen W+2 KP2GR.‑G. Popa
KurzbeschreibungDieser Kurs vermittelt praktische Kenntnisse in der magmatischen Mikroskopie. Identifizierung magmatischer Minerale im Dünnschliff und in Kristallseparaten, sowie ein tieferes Verständnis von Mineralgleichgewichtsassemblages und Ungleichgewichtsstrukturen werden vermitteln. Dies sind nützliche Fähigkeiten für die Untersuchung magmatischer Prozesse und die Rekonstruktion magmatischer Bedingungen.
LernzielDie Hauptziele sind der Erwerb von Fachwissen in den Bereichen:

(1) Optische Bestimmung von Mineralien in magmatischen Gesteinen;
(2) Identifizierung von magmatischen Gesteinen und ihrer Entstehungsgeschichte anhand von Mineralogie, Textur und Struktur;
(3) Identifizierung der Eruptionsprozesse, die sich in den Gesteins widerspiegeln, und Verständnis dafür, wie die Mineralien zur Rekonstruktion der physikalisch-chemischen Bedingungen in der Magmakammer verwendet werden können;
(4) Anwendung von Phasendiagrammen auf natürliche Gesteine.
InhaltIn diesem Kurs werden wir gemeinsam untersuchen, wie man plutonische und vulkanische Gesteine identifiziert und was ihre Mineralen und Strukturen über die Eruptionsbedingungen und -arten aussagen können. Wir werden verschiedene magmatische Evolutionslinien verfolgen, um die Entwicklung von Magmen zu verstehen, die unter verschiedenen Bedingungen und tektonischen Gegebenheiten entstanden sind, wobei wir uns auf die tholeiitischen, kalkalkalischen und alkalischen Serien konzentrieren. Wir werden uns ansehen, wie magmatische Bedingungen die Reihenfolge der Kristallisation und die Chemie der Mineralien beeinflussen und wie wir dieses Wissen nutzen können, um magmatische Prozesse zu rekonstruieren. Wir werden etwas über Gleichgewichtsassemblagen lernen, anhand derer wir sehen können, welche Minerale zusammengewachsen sind und dieselben magmatischen Bedingungen aufzeichnen (besonders wichtig für Petrologie und Mineralgeochemie), aber wir werden auch lernen, Ungleichgewichtsstrukturen zu interpretieren, die sich auf Prozesse beziehen, die häufig für Vulkanausbrüche verantwortlich sind.

Ziel ist es, den Kursteilnehmern ein grundlegendes Verständnis dafür zu vermitteln, wonach wir in den mineralischen und strukturelle Aufzeichnungen von Eruptivgestein suchen müssen, wie wir diese Merkmale erkennen und wie wir sie bei der Untersuchung magmatischer Systeme richtig nutzen können.
SkriptFür die optische Bestimmung von (magmatischen) Mineralen mit dem Polarisationsmikroskop sind die Tabellen von Tröger ("Optische Bestimmung der gesteinsbildenden Minerale", 1982) besonders hilfreich. Diese sind in ausreichender Zahl im Seminarraum vorhanden.

Zusätzliche Unterlagen werden während der Vorlesungen verteilt.
LiteraturWährend des Kurses werden wir Ihnen wichtige Dokumente zur Lektüre anbieten oder vorschlagen.
Voraussetzungen / BesonderesDieser Kurs setzt Grundkenntnisse in optischer Mineralogie und im Umgang mit dem Polarisationsmikroskop voraus, die im vorhergehenden Kurs vermittelt werden: Mikroskopie metamorpher Gesteine" (A. Galli). Für externe Studenten ist ein gleichwertiger Kurs erforderlich, um hier teilnehmen zu können.
Die Abgabe von 3 akzeptabel gelösten Hausaufgaben führt zu einer Erhöhung der Endnote um 0,25 (mit anderen Worten: wir geben Goodies).

Weitere Mikroskopie-Kurse an der ETH Zürich am D-ERDW sind:
Grundlagen der Gesteinsmikroskopie (M.W. Schmidt, Bachelor-Kurs)
Microscopy of metamophic rocks (A. Galli, Voraussetzung für diesen Kurs)
Sedimentary petrography and microscopy (V. Picotti & M.G. Fellin)
Reflected Light Microscopy and Ore Deposits Practical (T. Driesner)
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Problemlösunggefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
651-4051-00LReflected Light Microscopy and Ore Deposits Practical Belegung eingeschränkt - Details anzeigen W+2 KP2PT. Driesner
KurzbeschreibungIntroduction to reflected light microscopy. Use of the microscope. Identification of opaque minerals through the use of determination tables. Description of textures and paragenetic sequences.
Taking the course in parallel with Ore Deposits I (651-4037-00L) is recommended but not mandatory.
LernzielRecognition of the most important ore minerals in polished section, interpretation of ore mineral textures from important ore deposit types (of hydrothermal, magmatic, sedimentary and metamorphic origin) in geological context.
InhaltIntroduction to reflected light microscopy as a petrographic technique. Leaning main diagnostic criteria. Study of a small selection of important and characteristic ore minerals. Interpreting polished (thin) sections from the most important ore deposit types.
SkriptLecture ppt's and determination tables are handed out in class
LiteraturSpry, P.G., Gedlinske, B.L. (1987) Tables for the determination of common opaque minerals. Econ. Geol. Publishing Company, New Haven, 52 pp.
(Hands on table book with optical and other properties of most important ore minerals in reflected light. Reprints can be still obtained from the SEG online bookstore. Copies of this book will be used in the course throughout.)

Craig, J.R., Vaughan, D.J. (1994) Ore microscopy and ore petrography. Second edition, John Wiley Publisher, New York, 434 pp.
Good graduate level introductory textbook, covers principles of reflected-light microscopy, interpretation of ore textures and most common ore mineral assemblages. Still available.

---

Baumann, L. and Leeder, O. (1991) Einführung in die Auflichtmikroskopie. Deutscher Verlag für Grundstoffindustrie, Leipzig, 408 pp. (in german).
(Good german equivalent of the Craig & Vaughan book.)

Cabri, L.J., Vaughan, D.J. (1998) Modern approaches to ore and environmental mineralogy. Mineralogical Association of Canada, Short Course Series, v. 27, 421 pp.
(Advances series of papers linking classical microscopical techniques with modern state-of-the-art microanalytical approaches (LA-ICP-MS, SIMS, PIXE etc.))


Mücke, A. (1989) Anleitung zur Erzmikroskopie. Enke, Stuttgart, 187 pp. (in german)
(The technical part is a good german equivalent of Craigh & Vaughan while the sections on textures and their interpretation is much less systematic.)

Ramdohr, P. (1980) The ore minerals and their intergrowths. Vols. 1 and 2, Pergamon Press, Oxford, 1207 pp.
(Largest monograph about ore minerals and their textures, excellent reference book for assemblages and textures, but not useful for determination of common and typical minerals, interpretation of textures often outdated. Only available in the library.)

Pracejus, B. (2008) The ore minerals under the microscope. An optical guide. Atlases in Geosciences 3, Elsevier, 875 pp.
(Comprehensive collection of photomicrographs of ore minerals in reflected light. Not very helpful for determination purposes but instructive for comparison with own samples.)

Uytebogaart, W., Burke, E.A.J. (1971) Tables for microscopic identification of ore minerals. Elsevier, Amsterdam, 430 pp.
(Extensive and well organized tables for practical determination of common and less abundant ore minerals. Only available in the library.)
Voraussetzungen / BesonderesCredits and mark based onan independent description of one selected polished section at the end of the course
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Problemlösunggefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
651-4113-00LSedimentary Petrography and Microscopy Belegung eingeschränkt - Details anzeigen W+2 KP2GV. Picotti, M. G. Fellin
KurzbeschreibungMikroskopische Untersuchung und Beschreibung von Karbonat (1. Semesterhälfte) und siliziklastischen Gesteinen (2. Hälfte), sowie kieseligen, phosphatischen und evaporitischen Sedimenten.
LernzielBeschreibung von Inhalt (Körner, Zement/Matrix), Gefüge, Klassifikation der wichtigen Sedimentgesteine im Dünnschliff. Diskussion und Interpretation des Sedimtationsmilieus. Diagenetische Prozesse.
InhaltMikroskopie von Karbonat- und siliziklastischen Gesteinen, kieseligen Gesteinen und Phosphatgesteinen, ihren Ursprung und die Klassifikation. Diagenetische Prozesse.
SkriptWird zur Verfügung gestellt.
LiteraturTucker, M. E. (1985): Einführung in die Sedimentpetrologie. Ferdinand Enke Verlag, Stuttgart. 265 p.
Voraussetzungen / BesonderesDer vorhergehende Besuch von anderen MSc Mikroskopiekursen (magmatische oder metamorphe Gesteine) ist keine Voraussetzung, wenn im Bachelorprogramm bereits ein Kurs in Mikroskopie der Gesteine absolviert wurde.
Teil B: Methoden
NummerTitelTypECTSUmfangDozierende
651-4055-00LAnalytical Methods in Petrology and GeologyW+3 KP2GJ. Allaz, S. Bernasconi, M. Guillong, L. Zehnder
KurzbeschreibungPractical work in analytical chemistry for Earth science students.
LernzielKnowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report.
InhaltIntroduction to analytical geochemistry and atom physics, notably:
- X-ray diffraction (XRD),
- X-ray fluorescence analysis (XRF),
- Electron Probe Microanalyzer (EPMA),
- Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS),
- Mass spectroscopy for light isotopes.
SkriptShort handouts for each analytical method.
KompetenzenKompetenzen
Fachspezifische KompetenzenVerfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKooperation und Teamarbeitgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgeprüft
Selbststeuerung und Selbstmanagement geprüft
651-4117-00LSediment Analysis Belegung eingeschränkt - Details anzeigen
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W+3 KP2GM. G. Fellin, A. Gilli, V. Picotti
KurzbeschreibungTheoretische Grundlagen und Anwendungen von einfachen Methoden der Sedimentuntersuchung.
LernzielDas Ziel ist die korrekte Anwendung der Korngrösse- und Gefüge-Analyse an Sedimenten, um die sedimentären Prozesse und Ablagerungsräume zu bestimmen.
Voraussetzungen / BesonderesPrerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggefördert
Soziale KompetenzenKooperation und Teamarbeitgefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
651-0046-00LElectron Microscopy Course (SEM and EPMA)W+3 KP3GJ. Allaz, L. Grafulha Morales
KurzbeschreibungTheory and lab demo of scanning electron microscope (SEM) and electron microprobe analysis (EPMA) applied to geological materials: introduction to the instruments, interaction of electron with matter, electron imaging (SE, BSE, CL), electron backscatter diffraction (EBSD), X-ray analysis for the chemical characterisation of solid material at the micron-scale.
LernzielUnderstand how the instrument works, why it is used, and how the different signals are being generated and analysed. Ability to treat and to present analytical results, such as calculating a mineral formula from a mineral analysis.
InhaltPhysical principles of electron microscopy: electron optics, interaction of electrons with matter, production of X-rays, interaction of X-rays with matter, X-rays detection and analysis. The second part of the course includes several demonstrations on various SEMs (at ERDW and ScopeM) and one EPMA at DERDW.
SkriptScript will be provided, along with copies of the course presentations.
Literatur[HIGHLY recommended]
- Goldstein, J.I. et al., (2003, third ed.): Scanning Electron Microscopy and X-Ray Microanalysis. https://link.springer.com/book/10.1007/978-1-4615-0215-9

[Additional references]
- Reed, S.J.B. (2005, second ed.): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology.
- Reed S.J.B. (1993, second ed.): Electron Microprobe Analysis
- Anderson, C.A. (1973): Microprobe Analysis. Wiley & Sons, New York.
Voraussetzungen / BesonderesNo prerequisite required beside basic knowledge of petrology and mineralogy. Attending the "Analytical Methods in Geology and Petrology" prior to this course is an advantage.
KompetenzenKompetenzen
Fachspezifische KompetenzenVerfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKooperation und Teamarbeitgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
651-4063-00LX-Ray Powder Diffraction Belegung eingeschränkt - Details anzeigen W+3 KP2GM. Plötze
KurzbeschreibungIn the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.
LernzielUpon successful completion of this course students are able to:
- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.

The competencies of system understanding, concept development, and measurement methods are taught and examined.
InhaltFundamental principles of X-ray diffraction
Setup and operation of X-ray diffractometers
Interpretation of powder diffraction data
Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)
SkriptSelected handouts will be made available in the lecture
LiteraturBRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984)
(Link)
DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008.
(http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9)
PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009.
(https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc)
Voraussetzungen / BesonderesThe course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data.
Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential.
Software will be provided for future use on own Laptop.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengeprüft
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Wahlpflichtmodule Geology
Innerhalb der Majors Geology sind mindestens zwei Wahlpflichtmodule zu absolvieren.
Biogeochemistry
Biogeochemistry: Obligatorische Fächer
Die obligatorischen Fächer dieses Moduls finden im Frühjahrssemester statt.
Biogeochemistry: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W3 KP2GV. Picotti, A. Gilli, H. Stoll, H. Zhang
KurzbeschreibungThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Lernziel-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Inhalt-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Skriptno script. scientific articles will be distributed during the course
LiteraturWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Voraussetzungen / BesonderesThe grading of students is based on in-class exercises and end-semester examination.
651-4057-00LClimate History and PalaeoclimatologyW4 KP2GH. Stoll, H. Zhang
KurzbeschreibungClimate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.
LernzielThe student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
InhaltThe course spans 5 thematic modules:

1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present?
2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere?
3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems?

4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years?

The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
Palaeoclimatology
Palaeoclimatology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4057-00LClimate History and PalaeoclimatologyW+4 KP2GH. Stoll, H. Zhang
KurzbeschreibungClimate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.
LernzielThe student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
InhaltThe course spans 5 thematic modules:

1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present?
2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere?
3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems?

4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years?

The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
Palaeoclimatology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W3 KP2GV. Picotti, A. Gilli, H. Stoll, H. Zhang
KurzbeschreibungThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Lernziel-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Inhalt-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Skriptno script. scientific articles will be distributed during the course
LiteraturWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Voraussetzungen / BesonderesThe grading of students is based on in-class exercises and end-semester examination.
Sedimentology
Sedimentology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4041-00LSedimentology I: Physical Processes and Sedimentary SystemsW+3 KP2GV. Picotti
KurzbeschreibungSediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record.
LernzielThe students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning.
InhaltDetails on the program will be handed out during the first lecture.
LiteraturThe sedimentary record of sea-level change
Angela Coe, the Open University.
Cambridge University Press
Voraussetzungen / BesonderesThe grading of students is based on in-class exercises and end-semester examination.
651-4043-00LSedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems
Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L).
W+3 KP2GV. Picotti, A. Gilli, H. Stoll, H. Zhang
KurzbeschreibungThe course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography.
Lernziel-You will understand chemistry and biology of the marine carbonate system
-You will be able to relate carbonate mineralogy with facies and environmental conditions
-You will be familiar with cool-water and warm-water carbonates
-You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle
-You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth)
-You will be able to use geological archives as source of information on global change
-You will have an overview of marine sedimentation through time
Inhalt-carbonates,: chemistry, mineralogy, biology
-carbonate sedimentation from the shelf to the deep sea
-carbonate facies
-cool-water and warm-water carbonates
-organic-carbon and black shales
-C-cycle, carbonates, Corg : CO2 sources and sink
-Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr
-marine sediments thorugh geological time
-carbonates and evaporites
-lacustrine carbonates
-economic aspects of limestone
Skriptno script. scientific articles will be distributed during the course
LiteraturWe will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems"
Voraussetzungen / BesonderesThe grading of students is based on in-class exercises and end-semester examination.
Sedimentology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4901-00LQuaternary Dating Methods Information W2 KP1GI. Hajdas, M. Christl
KurzbeschreibungReconstruction of time scales is critical for all Quaternary studies in Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range.
LernzielStudents will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories.

At the end of the course, students will:
1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies.
2. choose which dating method (or combination of methods) suits a certain field problem.
3. critically read and evaluate the application of dating methods in scientific publications.
Inhalt1. Introduction: Isotopes and decay
2. Radiocarbon dating: principles and applications
3. AMS technique and its application in Quaternary geochronology
4. U-series disequilibrium dating
5. Luminescence dating
6. Introduction to incremental: varve counting, dendrochronology, and ice cores chronologies
7. Dating anthropogenic records
Voraussetzungen / BesonderesVisit to radiocarbon lab, cosmogenic nuclide lab, and accelerator (AMS) facility.

Required: attending the lecture, visiting laboratories, handing back solutions for problem sets, short presentations or written report

Optional (individual): 1-5 days of hands-on radiocarbon dating at the 14C lab, ETH Hoenggerberg
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Problemlösunggefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Persönliche KompetenzenKritisches Denkengefördert
651-4063-00LX-Ray Powder Diffraction Belegung eingeschränkt - Details anzeigen W3 KP2GM. Plötze
KurzbeschreibungIn the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters.
LernzielUpon successful completion of this course students are able to:
- describe the principle of X-ray diffraction analysis
- carry out a qualitative and quantitative mineralogical analysis independently,
- critically assess the data,
- communicate the results in a scientific report.

The competencies of system understanding, concept development, and measurement methods are taught and examined.
InhaltFundamental principles of X-ray diffraction
Setup and operation of X-ray diffractometers
Interpretation of powder diffraction data
Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis)
SkriptSelected handouts will be made available in the lecture
LiteraturBRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984)
(Link)
DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008.
(http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9)
PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009.
(https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc)
Voraussetzungen / BesonderesThe course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data.
Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential.
Software will be provided for future use on own Laptop.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengeprüft
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
651-4341-00LSource to Sink Sedimentary Systems Belegung eingeschränkt - Details anzeigen W3 KP2GT. I. Eglinton, J. Hemingway, L. Bröder, M. Griepentrog
KurzbeschreibungThe transfer and redistribution of mass and chemical elements at the Earth’s surface is controlled by a wide range of processes that will affect the magnitude and nature of fluxes exported from continental fluvial systems. This course addresses the production, transport, and deposition of sediments from source to sink and their interaction with biogeochemical cycles.
LernzielThis course aims at integrating different earth science disciplines (geomorphology, geochemistry, and tectonics) to gain a better understanding of the physical and biogeochemical processes at work across the sediment production, routing, and depositional systems. It will provide insight into how it is actually possible to “see a world in a grain of sand” by taking into account the cascade of physical and chemical processes that shaped and modified sediments and chemical elements from their source to their sink.
InhaltLectures will introduce the main source to sink concepts and cover physical and biogeochemical processes in upland, sediment producing areas (glacial and periglacial processes; mass movements; hillslopes and soil processes/development; critical zone biogeochemical processes).

Field excursion (3 days, 30 September -2 October 2022): will cover the upper Rhône from the Rhône glacier to the Rhône delta in Lake Geneva) as small scale source-to-sink system.

Practicals comprise (I) a small autonomous project on the Rhône catchment based on samples collected during the field trip and (II) an independent report on how you would design, build, and implement your own source-to-sink study.
SkriptLecture notes are provided online during the course. They summarize the current subjects week by week and provide the essential theoretical background.
LiteraturSuggested references :

- "Sediment routing systems: the fate of sediments from Source to Sink" by Philip A. Allen (Cambridge University Press)
- "Principles of soilscape and landscape evolution by Garry Willgoose" (Cambridge University Press)
- "Geomorphology, the mechanics and chemistry of landscapes" by Robert S. Anderson & Suzanne P. Anderson (Cambridge University Press)
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgeprüft
Menschenführung und Verantwortunggefördert
Persönliche KompetenzenKritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
651-4243-00LSeismic Stratigraphy and FaciesW2 KP3GG. Eberli
KurzbeschreibungThe course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology.
Lernziel1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems
2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems
3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between lithostratigraphy and sequence stratigraphy
4. Learn to integrate seismic data into paleoceonagraphic and paleoclimatic research.
InhaltThe four day course consists of lectures that are accompanied by a variety of exercises.

Day 1:
Introduction seismic facies analysis with exercise
Seismic resolution
Seismic facies of contourite drift systems and their value as physical indicators of global current changes.

Day 2:
Seismic attributes and seismic geomorphology
Siliciclastic deltas, shelves and turbidite systems, 2D-3D
Exercise: Seismic section Tarragon Basin and reconstructing the basin evolution with respect to the climate conditions at the end of the Miocene.
Seismic facies carbonate systems
Carbonates as recorders of sea level and paleoclimate
Deepwater environments, including cold-water coral habitats

Day 3:
Carbonates versus volcanic seismic facies
Introduction seismic attributes
Faults and structures on seismic sections
Seismic facies of mixed systems with
Exercises from Canada and the Paradox Basin

Day 4:
Sea level and sedimentation
Telling ages on seismic section
Seismic stratigraphy and sequence stratigraphy
Exercise: Sequence analysis Straits of Andros
Final discussion
SkriptAn original script (110 pages) designed for the class will be distributed at the beginning of the course.
LiteraturBooks Seismic Interpretation of Depositional Systems:

Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133.
Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp.
Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, pp 481.
Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274.
Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81.
Rebesco, M. & Camerlenghi, A., 2008, Contourites. Developments in Sedimentology 60, Elsevier.Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270.

Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp
Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63.
Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp.
Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp.
Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58.
Voraussetzungen / BesonderesBasic knowledge in sedimentology and stratigraphy
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
Selbstbewusstsein und Selbstreflexion geprüft
Selbststeuerung und Selbstmanagement geprüft
Structural Geology
Structural Geology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4132-00LField Course IV: Alpine Field Course
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only.
W+3 KP6PW. Behr, V. Picotti
Kurzbeschreibung
Lernziel
Voraussetzungen / BesonderesStudents who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter.
Deadline for motivation letter: 31 October 2018

Final decision 20 November 2018

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
Structural Geology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4111-00LExperimental Rock Physics and Deformation Belegung eingeschränkt - Details anzeigen W3 KP2GL. Tokle, C. Madonna, A. S. Zappone
KurzbeschreibungWe illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field.
LernzielThe objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale .

Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment.

For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating.
For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data.

The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling
InhaltThe course will focus on research-based term project, lectures will alternate with laboratory demonstrations.

We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties:
- permeability;
- elastic properties for seismic interpretations;
- anisotropy of the above physical properties.
We will measure some of those parameters in laboratory and discuss real case studies and applications.

Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures.
In laboratory we will show:
- Experimental deformation rigs (gas, fluid and solid confining media);
- Main part of the apparatus (mechanical, hydraulic, heating system, data logging);
- Calibration of an apparatus (distortion of the rig; transducers calibration);
- Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests);
Voraussetzungen / BesonderesThe course of Structural Geology (651-3422-00L) is highly recommended before attending this course.
Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography.

In doubt, please contact the course responsible beforehand.
  •  Seite  1  von  7 Nächste Seite Letzte Seite     Alle