Search result: Catalogue data in Autumn Semester 2022
Interdisciplinary Sciences Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical-Chemical Direction | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Semester (Physical-Chemical Direction) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compulsory Subjects First Year Examinations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-1261-07L | Analysis I: One Variable | O | 10 credits | 6V + 3U | G. Felder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The ability to work with the basics of calculus in a mathematically rigorous way. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | H. Amann, J. Escher: Analysis I https://link.springer.com/book/10.1007/978-3-7643-7756-4 J. Appell: Analysis in Beispielen und Gegenbeispielen https://link.springer.com/book/10.1007/978-3-540-88903-8 R. Courant: Vorlesungen über Differential- und Integralrechnung https://link.springer.com/book/10.1007/978-3-642-61988-5 O. Forster: Analysis 1 https://link.springer.com/book/10.1007/978-3-658-00317-3 H. Heuser: Lehrbuch der Analysis https://link.springer.com/book/10.1007/978-3-322-96828-9 K. Königsberger: Analysis 1 https://link.springer.com/book/10.1007/978-3-642-18490-1 W. Walter: Analysis 1 https://link.springer.com/book/10.1007/3-540-35078-0 V. Zorich: Mathematical Analysis I (englisch) https://link.springer.com/book/10.1007/978-3-662-48792-1 A. Beutelspacher: "Das ist o.B.d.A. trivial" https://link.springer.com/book/10.1007/978-3-8348-9599-8 H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten https://link.springer.com/book/10.1007/978-3-642-28646-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-1151-00L | Linear Algebra I | O | 7 credits | 4V + 2U | P. Biran, M. Einsiedler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Mastering basic concepts of Linear Algebra - Introduction to mathematical methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Basics - Vectorspaces and linear maps - Systems of linear equations and matrices - Determinants - Endomorphisms and eigenvalues | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | We will provide German lecture notes and an English translation at latest at the start of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Lecture notes in German and an English translation will be published on the website of the course, at latest at the start of the semester. Besides this we also recommend: - G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5 - K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8 - H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/search?query=kowalsky+michler - S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link In addition we recommend this general introduction into studying mathematics: - H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-1701-00L | Physics I | O | 7 credits | 4V + 2U | W. Wegscheider | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives a first introduction to Physics with an emphasis on classical mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-01L | General Chemistry (Physical Chemistry) I | O | 3 credits | 2V + 1U | H. J. Wörner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture provides an introduction to some of the physical fundamentals of chemistry, in particular radioactivity, quantum mechanics, the structure of matter and an atom, the periodic table of elements, and chemical bonding. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the lecture, students will be able to, - to calculate physical quantities and their units which are important for chemistry, - name some properties of chemically relevant particles and propose experimental methods to determine these properties, - name applications and hazards of radioactivity, - categorize radioactive decay processes and mathematically represent the time course of simple decay reactions and qualitatively predict and represent them, - describe wave and particle properties of electromagnetic radiation and matter and propose experimental methods for their detection, - to explain the basics of quantum mechanics (meaning of the wave function, Heisenberg's uncertainty principle, operators, commutators) and to perform simple calculations with them, - analyze and calculate absorption and emission spectra of single-electron atoms, - to set up the Schrödinger equation for a molecular multi-particle system, - independently solve the Schrödinger equation for the model systems of particles in a box and harmonic oscillator in one dimension and generalize to higher dimensional non-interacting problems, - model molecular vibrations of diatomic molecules using the harmonic and anharmonic oscillator model, - explain the concept of an orbital and represent mathematically and pictorially the qualitative form of the orbitals of the hydrogen atom, - explain the structure of the periodic table of elements with the help of the orbital concept, - recognize and use similarities in the electronic structure of atoms to predict chemically relevant properties, and - establish term symbols for atomic ground states. Translated with www.DeepL.com/Translator (free version) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additional First Year Compulsory Subjects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-04L | Practical Course General Chemistry Latest online enrolment is 19.09.2022 Information about the practical course will be given on the first day. | O | 8 credits | 12P | H. V. Schönberg, E. C. Meister | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Qualitative analysis (determination of cations and anions), acid-base-equilibria (pH- values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redoxreactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration). Analysis of measured data, vapour pressure, conductivity, calorimetry, solubility. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa-values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements), metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | http://www.gruetzmacher.ethz.ch/education/labcourses Im Praktikum abgegeben: E. Meister, Praktikum Allgemeine Chemie, Teil Physikalische Chemie, 22. Aufl., 2021, ETH Zürich. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Moodle Lernplattform | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Compulsory: online enrolment latest one week after start of the semester Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-02L | General Chemistry (Inorganic Chemistry) I | W+ | 3 credits | 2V + 1U | A. Togni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | C. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-03L | General Chemistry (Organic Chemistry) I | W+ | 3 credits | 2V + 1U | P. Chen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicity, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromaticity, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Unterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | C. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. Semester (Physical-Chemical Direction) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0422-00L | Physical Chemistry II: Chemical Reaction Kinetics | O | 4 credits | 3V + 1U | R. Signorell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Chemical Reaction Kinetics. Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics. Simple chemical reaction rate theories. Reaction mechanisms and complex kinetic systems, chain reactions. Homogeneous catalysis and enzyme kinetics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to Chemical Reaction Kinetics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics. Kinetics of charged particles. Diffusion and diffusion-controlled reactions. Photochemical kinetics. Heterogeneous reactions and heterogeneous catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - M. Quack und S. Jans-Bürli: Molekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik, VdF, Zürich, 1986. - G. Wedler: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim, 1982. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: - Mathematik I und II - Allgemeine Chemie I und II - Physikalische Chemie I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-2883-00L | Physics III | O | 7 credits | 4V + 2U | Y. Chu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory course on quantum and atomic physics including optics and statistical physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Einführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen. Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer. Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt. Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | M. Alonso, E. J. Finn Quantenphysik und Statistische Physik R. Oldenbourg Verlag, München 5. Auflage ISBN 978-3-486-71340-4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electives The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at a Bachelor level at ETH Zurich. In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2018 for further details. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
252-0847-00L | Computer Science | W | 5 credits | 2V + 2U | C. Cotrini Jimenez, F. Friedrich Wicker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010 Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012 Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-2303-00L | Complex Analysis | W | 6 credits | 3V + 2U | E. Kowalski | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-2333-00L | Mathematical Methods of Physics I | W | 6 credits | 3V + 2U | T. H. Willwacher | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0205-00L | Quantum Mechanics I | W | 10 credits | 3V + 2U | C. Anastasiou | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture. Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Auf Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0255-00L | Introduction to Solid State Physics | W | 10 credits | 3V + 2U | C. Degen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to Solid State Physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The script will be available on moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Ibach & Lüth, Festkörperphysik C. Kittel, Festkörperphysik Ashcroft & Mermin, Festkörperphysik W. Känzig, Kondensierte Materie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Physik I, II, III wünschenswert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0263-00L | Astrophysics I | W | 10 credits | 3V + 2U | S. Lilly | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A comprehensive "script" (240 pages, with detailed derivations) is provided to students. In addition, all powerpoint slides shown in the lectures are provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0595-00L | Semiconductor Nanostructures | W | 6 credits | 2V + 1U | T. M. Ihn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures: 1. The integer quantum Hall effect 2. Conductance quantization in quantum point contacts 3. the Aharonov-Bohm effect 4. Coulomb blockade in quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction and overview 2. Semiconductor crystals: Fabrication and molecular beam epitaxy 3. Band structures of semiconductors 4. k.p-theory, effective mass, envelope functions 5. Heterostructures and band engineering, doping 6. Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures 7. Heterostructures and two-dimensional electron gases 8. Drude Transport and scattering mechanisms 9. Single- and bilayer graphene 10. Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments 11. Interference effects in Aharonov-Bohm rings 12. Electron in a magnetic field, Shubnikov-de Haas effect 13. Integer quantum Hall effect 14. Coulomb blockade and quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | T. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | In addition to the lecture notes, the following supplementary books can be recommended: 1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998) 2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997) 3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997) 4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003) 5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991) 6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-2203-01L | Classical Mechanics | W | 7 credits | 4V + 2U | M. Gaberdiel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, Hamiltonian mechanics, canonical transformations, Hamilton-Jacobi equation, spinning top, relativistic space-time structure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0051-00L | Analytical Chemistry I | W | 3 credits | 3G | D. Günther, M.‑O. Ebert, G. Schwarz, R. Zenobi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into the most important spectroscopical methods and their applications to gain structural information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods: Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements. NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling. IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy. UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD). Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script will be for the production price | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; - D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996; - M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995 - E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001- Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Excercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0121-00L | Inorganic Chemistry I | W | 3 credits | 2V + 1U | H. Grützmacher, P. Steinegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Discussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals as well as the lanthanides and actinides. Introduction of methods of characterization, physical-chemical properties of coordination compounds as well as principles of radiochemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. The students will acquire knowledge on the fundamentals of radioactive decay and radiochemistry. Furthermore, they will be familiar with the basics of inorganic chemistry of lanthanides and actinides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) Properties and characterization of coordination compounds; 9) Introduction to radiochemistry; 10) Principles of the chemistry of the lanthanides and actinides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Eine kommentierte Foliensammlung ist im HCI-Shop erhältlich. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - J. E. Huheey, E. Keiter, R. Keiter: Anorganische Chemie, Prinzipien von Struktur und Reaktivität, De Gruyter, 5. Auflage, 2014 (ebook available at ETH Zurich). - N. Wiberg, Lehrbuch der Anorganischen Chemie, De Gruyter, 102. Auflage, 2008 (ebook available at ETH Zurich). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0221-00L | Organic Chemistry I | W | 3 credits | 2V + 1U | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course will build upon the basic knowledge of structure and reactivity of organic molecules gained in AC/OCI and AC/OCII. The module aims to provide a wide understanding of the occurrence, synthesis, properties, and reactivity of carbonyl compounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is the acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids, and carboxylic acid derivatives. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure and properties of carbonyl compounds. Chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds). Synthesis and reactivity of carboxylic acid derivatives (nucleophilic addition-elimination reactions). Oxidations and reductions. Reactivity at the alpha-carbon (keto/enol tautomerization, alpha-functionalization, aldol reactions, conjugate addition reactions). Introduction to the concepts of protecting groups and retrosynthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture slides, problem sets, and additional documents are provided online. Link: https://wennemers.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Clayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012. Additional literature will be provided at the beginning of the class and in the lecture notes. |
- Page 1 of 3 All