# Search result: Catalogue data in Autumn Semester 2022

Materials Science Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Bachelor Studies (Programme Regulations 2020) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Basis Courses Part 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Examinations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

401-0261-G0L | Analysis I | O | 8 credits | 5V + 3U | A. Steiger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Differential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Introduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | U. Stammbach: Analysis I/II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Exercises and online quizzes are an important aspect of this course. Attempts at solving these problems will be honored with a bonus on the final grade. See "Performance assessment" for more information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

401-0171-00L | Linear Algebra I | O | 3 credits | 2V + 1U | N. Hungerbühler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Linear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear algebra II. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Upon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Systems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | * K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002 * K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Active participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0112-00L | Chemistry I | O | 4 credits | 3G | M. Niederberger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to the basics, terms and concepts of general chemistry, their application to questions in material science and their connection to laboratory experiments and projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | 1) Students can describe the different atomic structures of metals, polymers and ceramics and derive basic material-typical properties. 2) Students are familiar with the concept of mole and molar mass and can perform stoichiometric calculations. 3) Students are able to formulate the law of mass action and, with the help of the equilibrium constant, make statements about the position of equilibrium. They understand how a chemical equilibrium reacts to changes in concentration, pressure and temperature and how to apply Le Châtelier's principle. 4) Students can define oxidation and reduction, determine oxidation numbers, assign reducing and oxidizing agents and calculate redox potentials. They can transfer the basics of redox chemistry to material science processes and applications such as corrosion or batteries. 5) They can explain the terms acid and base, understand what pH means and they can perform pH calculations. They can describe the meaning of acids and bases using material science examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | We start the lecture with the question what chemistry has to do with material science. After that, we devote ourselves to the classification and separation of substances. In the next chapter we discuss the atomic structure and the periodic table. After the introduction to stoichiometry, the field of chemistry that deals with the amounts of substances added and formed in chemical reactions, we will cover the concept of chemical equilibrium, where we will learn about the law of mass action, equilibrium constants, solubility product, and also acid-base equilibria. In the final block of the lecture, materials science will once again be in the focus when we discuss redox reactions, electrochemistry and corrosion as well as the influence of chemical bonding on material properties. For each chapter we will solve exercises in class. Further exercises will be available on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture slides with references to further literature and additional exercises are available on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | German | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0050-00L | Physics I | O | 4 credits | 2V + 2U | D. Rupp | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The lecture covers the basics of classical mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The aim of this lecture is to become familiar with the central concepts of classical mechanics, to test and consolidate basic concepts and physical intuition, and to be able to describe and solve problems with applications from everyday life and technology with the tools learned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | - Inertia, equations of motion, Newton's laws, forces and system boundaries - Energy, impulse, rocket launch - Central forces, celestial mechanics - Tidal/apparent forces, resting and accelerated reference systems - Rotational motion - Basic properties of deformable bodies - Vibrations and resonance phenomena, waves | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A skript to the lecture is provided online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Rainer Müller, Klassische Mechanik - vom Weitsprung zum Marsflug. De Gruyter 2015. Paul A. Tipler und Gene Mosca, Jenny Wagner (Hrsg.), Physik für Wissenschaftler und Ingenieure, Kapitel I, II, und III, Springer 2015. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0113-00L | Foundations of Materials Science I | O | 2 credits | 2G | L. Isa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The basic physical concepts for the description of materials are taught, partly in self-study, and applied in exercises. Basic atomistic and macroscopic concepts (e.g. phase diagrams, phase transformations, response functions) are introduced through examples. Selected topics are deepened in classroom lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Students are able to - name the basic concepts of materials science. (remember, 1) - describe simple relations between atomic structure and macroscopic properties. (understand, 2) - calculate basic material-specific quantities. (apply, 3) - read and interpret phase diagrams, material characteristic (e.g. stress-strain) diagrams and Ashby plots (analyse, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Atomic structure Crystalline structure and defects Thermodynamics, phase diagrams and phase transformations Diffusion Mechanical and thermal properties of materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Main textbook: William D. Callister, Jr., David G. Rethwisch Materials Science and Engineering - An Introduction 8th Ed., Wiley, Hoboken NJ, 2011 Alternatives: Milton Ohring Engineering Materials Science Academic Press, 1995, https://doi.org/10.1016/B978-0-12-524995-9.X5023-5 James F. Shackelford Introduction to Materials Science for Engineers 5th Ed., Prentice Hall, New Jersey, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Additional First Year Basic Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0111-00L | Projects and Lab Courses I | O | 7 credits | 7P | M. B. Willeke, L. De Pietro, M. R. Dusseiller, S. Morgenthaler Kobas, T.‑B. Schweizer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Practical introduction to the basics of the scientific method, materials science, physics and chemistry in the form of laboratory experiments and projects, some of which are closely related to the lectures in the first year. Important chemical and physical methods are tested, project work is practiced and the basics of working safely in the laboratory are learned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The students - keep a laboratory journal independently, completely and appropriately. - can evaluate and display measurement data in a targeted manner. - are able to write laboratory reports appropriately. - know the communicative and rhetorical factors that are decisive for the success of an oral presentation. - create effective presentation documents. - know the general safety rules and disposal concepts for working in laboratories and apply them practically. - proceed correctly in case of accidents and evacuations. - learn practically how to fight a fire (fire protection course of the ETH). - apply the basic knowledge in analytics, chemistry, physics and materials science acquired in the base year in a practical way. - practice carrying out small experiments or small projects independently under supervision. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | In the area of scientific work: Keeping lab journals, data analysis, writing reports, presentation techniques, Test preparation and introduction to safe working and behaviour in the lab. Lab experiments: Experiments from the fields of synthetic and analytical chemistry and experiments from the fields of physics and materials science, e.g: Mechanical/thermal properties (e.g. modulus of elasticity, fracture mechanics), thermodynamics, colloid chemistry, "particle tracking" with DLS and microscopy, surface technology, "wood, stone and metal" processing, and electrochemistry. Some practical experiments are organized as short projects (two afternoons), e.g. "Building a microscope from a webcam", etc. In the projects: Two "reverse engineering" projects with everyday objects: Analysis of construction and materials, functioning in the overall context, life cycle of materials, alternative materials, etc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Instructions and further information on the individual experiments and projects (objectives, theory, experimental procedure, notes on evaluation) are available on the following website (https://praktikum.mat.ethz.ch). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Special students and auditors need a special permission from the lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0114-00L | Programming I | O | 2 credits | 2G | L. De Pietro | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course provides an introduction to the general computer and programming concepts, which are necessary to perform numerical calculations, representations and simulations in materials science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | - Students independently develop programs to accomplish numerical calculations, representations and simulations. - They analyse and understand the functionality of existing programs and can supplement or adapt them according to their requirements. - They recognize basic computer science concepts and apply algorithmic thinking, i.e. they have the ability to solve problems systematically using developed algorithms. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course contains a first introduction to Python and Matlab. It contains: • Basic programming concepts of structural programming like - Variables - Lists - Loops - Branches - Control structures • Input and output • Modular structure of programs with functions • Flowcharts • Numerical accuracy • Data evaluation and presentation - Regression - Interpolation - Curves fit • Complexity Theory • Sorting and searching • Dynamic programming • Recursion • Graph Algorithms | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Moodle, Code Expert, ... | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | https://wiki.python.org/moin/BeginnersGuide | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Second Year Basic Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Examination Blocks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Examination Block 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

401-0363-10L | Analysis III | O | 3 credits | 2V + 1U | A. Iozzi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes by Prof. Dr. Alessandra Iozzi: https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY. G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis https://people.math.ethz.ch/~blatter/dlp.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0316-00L | Quantum Mechanics for Materials Scientists | O | 3 credits | 2V + 1U | S. Stepanow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Analysis and motivation for the necessity of a theory beyond classical mechanics to describe materials properties. The principles, terminology and concepts of quantum mechanics will be introduced and mathematically represented on the basis of simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Give reasons for the necessity of quantum mechanical description of matter and explain experimental observations leading to this description. Clarification of the term quantum object. Formulate and solve the Schrödinger equation for simple problems. Application of the operator formalism for the calculation of observables and the interpretation of physical processes. Interpretation of the wavefunction. Explain the solution of the hydrogen atom. Derivation of the approach to the solution in the application of symmetreis and angular momentum operators. Give reasons for the electron spin and calculate magnetic moments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Crisis of classical physics Planck's law of radiation (cavity radiation), photoelectric effect (Einstein's light quantum hypothesis), Bohr quantisation of the atom, De Broglie hypothesis Wave-particle dualism - wave mechanics, matter waves, double-slit experiment, comparison of classical mechanics and quantum mechanics Introduction of the wave function, de-Brogie relation, probability Postulates of quantum mechanics Introduction of the Schrödinger equation, normalisation of the wave function, stationary Schrödinger equation, location and momentum space, location representation of the momentum operator Wave packets (Gaussian bell curve), decay of wave packets, indeterminacy principle Wave mechanics with forces Piecewise constant potentials, particles in the potential well, potential step, probability current density, potential wall, tunnel effect, potential well Formalism of quantum mechanics Hilbert space, scalar product, vectors (basis), states, normalizability, completeness, eigenfunctions, notations, operators - general definitions and properties, Expectation values, spectrum (discrete, continuous), matrix representation, Ehrenfest theorem, measurement process and collapse of the wave function Central potential Eigenvalue problem in spherical coordinates, limiting cases, particles in a 3D pot, symmetries, rotation and angular momentum, angular momentum operator and spherical surface functions Hydrogen atom Coulomb potential, radial wave function, orbitals, atomic structure Charged particle in electric and magnetic field, magnetic moment, Stern-Gerlach experiment, spin, vector-valued wave function, free electron in magnetic field, spin resonance | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | in German, can be downloaded at https://intermag.mat.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | C. Cohen-Tannoudji, B. Diu und F. Laloe, Quantenmechanik I und II, de Gruyter, 1999. F. Kuypers, Quantenmechanik, Wiley-VCH, 2020. F. Schwabl, Quantenmechanik I, Springer, 1992. A. Messiah, Quantenmechanik I und II, de Gruyter, 1990/91. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Physik I and II. Analysis I and II. Lineare Algebra I and II. Foundations of Wahrscheinlichkeitsrechnung of Programmieren II. Fourier-Transformation from Analysis III is used, but is not a basic requirement. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0313-00L | Materials Characterization I | O | 3 credits | 3G | A. Lauria, A. Anastasaki | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction into the main spectroscopic methods and their applications to gain compositional and structural information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The aim of the course is to enable the students to select and apply the optimal analytical/spectroscopic methods for the identification of organic, inorganic and polymeric materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Particular emphasis is given to qualitative and quantitative analysis of material composition at the atomic/molecular level by mass spectrometry, atomic absorption, vibrational and UV-vis spectroscopy, thermal analysis, nuclear magnetic resonance. The course will include lectures as well as hands-on practical sessions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Examination Block 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0312-00L | Materials Synthesis I - Polymers | O | 4 credits | 4G | A. Anastasaki, D. Opris | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course teaches the basics and terminology of polymer synthesis. To synthesize various polymeric materials, different polymerization techniques are required. This course will introduce representative polymerization methodologies and will discuss how they operate in order to yield materials with enhanced polymeric characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | 1) The students will be able to recognize different polymer types and associate them with their chemical structure and properties (i.e. rubber elasticity, glass transition temperature, etc.) 2) The students will become familiar with various synthetic methods to produce polymers of different architectures and topologies 3) The students will be exposed to different characterization methods (e.g. size exclusion chromatography, mass-spectrometry, nuclear magnetic resonance) that are necessary to confirm the successful synthesis and structure of a polymer 4) The students will understand the mechanism of selected polymerization methodologies 5) The students will be introduced to state-of-the-art polymer synthesis and recent literature examples will be critically discussed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | conventional chain growth polymerization, living chain growth polymerization, step growth polymerization, polymeric architectures, molecular weight determination methods, polymer properties, polymerization mechanisms, polymer characterization methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture slides with references to further literature will be available on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | L. Mandelkern „An Introduction to Macromolecules“ J. M. G. Cowie “Polymers: Chemistry and Physics of Modern Materials publications mentioned on the slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0315-00L | Statistical Thermodynamics | O | 3 credits | 3G | A. Gusev, H. C. Öttinger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Foundations and applications of equilibrium thermodynamics and statistical mechanics, supplemented by an elementary theory of transport phenomena. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The course provides a solid working knowledge in thermodynamics (as the appropriate language for treating a variety of problems in materials science) and in statistical mechanics (as a systematic tool to find thermodynamic potentials for specific problems) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A guideline and a summary will be provided on the course website | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, 1985. K. Huang, Introduction to Statistical Physics, CRC Press, 2nd edition 2010. R. Kjellander, Thermodynamics Kept Simple - A Molecular Approach, CRC Press, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0104-00L | Crystallography | O | 2 credits | 2G | T. Lottermoser, M. Fiebig, A. Simonov, T. Weber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The properties of crystals, which represent a large part of solid materials, are closely related to their structural symmetry. The aim of the lecture crystallography is to convey concepts and mathematical basics of symmetry theory, structure-property relationships, as well as the basic features of structure determination. Simple crystal structure types are discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Introduction into the fundamental relationships between crystal structure, symmetry, and physical properties of solids. Emphasis: group-theoretical introduction into symmetry, discussion of the factors governing the formation of crystal structures, structural dependence of physical properties, fundamentals of experimental techniques probing the crystal structure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Symmetry and order: symmetry operations and lattices in two and three dimensions, point groups, space groups. Crystal structures: symmetry and geometrical factors governing the formation of crystal structures; close sphere packings; typical basic crystal structures. Structure/property relationships: Neumann's principle; examples: piezoelectricity, ferroelectric. Materials characterization: diffraction techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A script of the lecture until 2014 is available. Script notes for the present lecture will be provided before the start of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Walter Borchardt-Ott: Kristallographie. Springer 2002. Dieter Schwarzenbach: Kristallographie. Springer 2001. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Organisation: One hour of lectures per week accompanied by one hour of exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Projects and Applications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0314-00L | Computational Thinking Lab I | O | 2 credits | 1G + 1A | M. Kröger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | You are going to address, in groups, problems that are arising or may arise in the context of remaining courses of your studies, that cannot be solved analytically or manually within reasonable amounts of time, but solved computationally with the help of a programming language and computers. Knowledge of a computing language is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Students get used to one or more collaborative tools, work actively in groups. They invent, set up, structure, plan, and attempt solving a problem that requires developing algorithms. They make use of existing, or invent novel, computational methods. Aspects that should be taken into account when developing algorithms or codes are: speed of execution, ease of use, small amount of adjustable parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Development of a project plan, including modules to be created, milestones to be reached, required input data and its aquisition, tests to be performed, work sharing. The project needs to be documented, and codes saved using a collaborative environment (github, vscode share). Ideally, several groups attack a similar problem so that their results can be directly compared (concerning speed of execution, clarity etc.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Information available at https://polyphys.mat.ethz.ch/education/courses/CTL-I.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | A. Shiflet, G.W. Shiflet, Introduction to Computational Science: Modeling and Simulation for the Sciences, Princeton University Press; 2nd edition (March 30, 2014) ISBN-13: 978-0691160719 M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford, United Kingdom) ISBN-10 9780198556459 D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series, Vol. 1 ISBN-10 0122673514 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Knowledge of a programming language is mandatory. Participants need to create a github account. Detailed information available at https://polyphys.mat.ethz.ch/education/courses/CTL-I.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0311-00L | Projects and Lab Courses III | O | 8 credits | 8P | M. B. Willeke, L. De Pietro, T.‑B. Schweizer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | A project lasting one semester, with special requirements regarding choice of materials, properties, etc., concluding project presentation event. Experiments to teach experimental competence using selected examples from polymer chemistry, analytics and physics (e.g. for the storage or conversion of energy), partly closely based on courses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Learn how to organize, manage, and execute a semester-long project. To impart basic knowledge and experimental competence using selected examples from chemistry and physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Semester-long project, project assignment is determined at the beginning of each semester. Chemistry III: Synthesis of PMMA via Transesterification; PET recycling or manufacture of poly(methylmethacrylat) via radical polymerization of methylmethacrylat; 3D-printing. Physics I, five experiments out of: reflection spectroscopy, experiments on the field of polyers, e.g. viscoelasticity of the polymer melt (or an equivalent exp.), 2 phyiscs experiments (out of 4) at the EMPA: e.g. X-ray flourescence analysis, impedance measurements of batteries, "power to gas" or texture measurement, building a Lithium ionic battery; and further physic experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Notes with information for each experiment (aim of the experiment, theory, experimental procedure, data analysis) can be downloaded from the web (https://praktikum.mat.ethz.ch or https://www.mat.ethz.ch/studies/bachelor/laborpraktische-ausbildung.html). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Voraussetzungen: 1. Erfolgreiche Teilnahme sowohl am D-MATL P2-I und P2-II. 2. Bestandene Basisprüfung. Über allfällige Ausnahmen entscheidet der Praktikumsverantwortliche auf Anfrage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Third Year Basic Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Individual courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0512-00L | Electronic, Optical and Magnetic Properties of Materials | O | 7 credits | 5V + 2U | P. Gambardella | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course provides physical foundations to understand the response of different classes of materials to electromagnetic fields, focusing on their electrical, optical, and magnetic properties, and on the basic functioning of devices that exploit such properties. The lectures build on classical and quantum mechanical concepts to provide microscopic understanding and modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | To provide physical concepts for the understanding of material properties as well as the functioning of basic electronic, photonic, and magnetic devices. Understanding the electronic properties of solids is at the heart of modern society and technology. The aim of this course is to provide fundamental concepts that allow one to relate the electronic structure of different types of materials to their electrical, optical, and magnetic behavior. Beyond fundamental curiosity, such level of understanding is required in order to develop and appropriately describe new classes of materials for future technology applications. By the end of the course the student should have developed a semi-quantitative understanding of basic concepts in solid state physics and be able to appreciate the pertinence of different models to the description of specific material properties, including numerical estimates of the relevant parameters. The student should also learn to describe the working principles of a wide range of devices that are built to take advantage of such properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | PART I: The electronic structure of metals, semiconductors, and insulators Revision of classical concepts: electric fields and currents, Ohm’s and Drude’s model of electrical conductivity, Hall effect, thermoelectric effects. Revision of quantum mechanical concepts: Electron bands, Fermi statistics, Fermi energy and Fermi surface, density of states in k-space and as a function of energy. PART II: Semiconductors: concepts and devices Valence and conduction electron bands. Material parameters affecting the bandgap energy. Effective mass approximation. Charge carrier density as a function of temperature and doping. Electrical conductivity and mobility. Drift and diffusion currents. Diodes and transistors. Basic applications in electrical circuits. PART III: Dielectric properties of insulators The electric dipole. Microscopic origin of dipoles in matter: Electronic, ionic, molecular polarization. Electric field inside and outside dielectric materials. Connection between macroscopic and microscopic polarization. Dielectric breakdown. Electric polarization induced by time-dependent electric fields. Dielectric permittivity as a function of frequency. PART IV: Interaction of electromagnetic waves with matter The electromagnetic (EM) spectrum. Electromagnetic waves in vacuum; Energy, momentum, and angular momentum of EM waves; Sources of EM radiation; EM waves in matter. The refractive index. Transmission, Reflection, and Refraction from a microscopic point of view. Optical anisotropy, Optical activity, Dichroism. Optical properties of crystalline insulators and semiconductors, glasses, and metals. PART V: Photonic devices Photodiodes, photovoltaic cells, light emitting devices (LEDs), Laser diodes, displays, optical fibers. PART VI: Magnetism Classical magnetic phenomena. Quantum mechanical origin of magnetism. Magnetic moments in atoms and solids, exchange interaction, magnetic anisotropy. Diamagnetism, paramagnetism, ferromagnetism. Magnetic domains. Magnetization curves and magnetization processes. Soft and hard magnets. Applications of magnetic materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | in English, available for download at http://www.intermag.mat.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, 2006). General text that covers most arguments from the point of view of materials science. C. Kittel, Introduction to Solid State Physics (Wiley, 2005), also printed in German. General text that covers many arguments from the point of view of condensed matter physics. L. Solymar, D. Walsh, R.R.A. Syms, Electrical Properties of Materials (Oxford Univ. Press, 2014). Modern treatment of the electronic properties of materials, with examples of applications. The thermal properties of solids are not included. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012). General treatment of semiconductor physics and devices, including both basic and more advanced topics. Electromagnetism including dielectric and magnetic properties of matter, and electromagnetic waves: E.M. Purcell and D.J. Morin, Electricity and Magnetism (Cambridge U. Press, 2013). Optics and optical materials: E. Hecht, Optics (Lehmanns) ; M. Fox, Optical Properties of Solids (Oxford U. Press) Photonic Devices: D. A. Neamen (see above); Simon Sze, Physics of Semiconductor Devices (Wiley) Magnetism: J.M.D. Coey, Magnetism and magnetic materials (Cambridge U. Press, 2010). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Physik I and II, Materialphysik I and II. The lecture will be given in English. The script will be available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0513-00L | Mechanical Properties | O | 7 credits | 6G | R. Spolenak, F. J. Clemens, M. Schinhammer, A. Wahlen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course provides the fundamentals for understanding the mechanical properties of different classes of materials. The role played by the nano- and microstructure of the materials, how the mechanical properties are influenced by the composition or processing, as well as which methods can be used to determine material-specific mechanical parameters are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The students are able to - Apply the interplay of structure and properties in the selection and development of materials. - Understand plasticity, crack growth, high temperature properties, corrosion, diffusion, environmental influences, grain growth, fatigue, fracture mechanics across material classes. - to adjust mechanical properties in a targeted manner. - to select and develop the optimal materials for specific application areas by understanding the temperature-dependent material properties. - take measures to increase the service life of materials. - to link the similarities and differences of the various classes of materials. - understand concepts of material development and apply them to new materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | This lecture has the irreversible mechanical deformation of materials as its core topic. Independent of the material classes, the following phenomena are explained in detail and rigorously derived: Crystal plasticity at low temperatures (dislocation theory, hardening mechanisms, twinning, brittle-ductile transitions), plasticity in disordered structures (shear bands and strain localisation), Fracture mechanics (Griffith criterion, Weibull statistics, crack tip plasticity, J-integral, R-curve), fatigue (Wöhler curves and Paris law), environmental influences, tribology, high temperature plasticity (creep and deformation mechanism diagrams). All phenomena are illustrated by actual case studies using concrete materials and material systems. These include aluminium alloys, steels, high temperature alloys, advanced ceramics, structural polymers and composites. The lecture is supported by exercises and practical experiments and uses material databases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0515-00L | Thermal and Transport Properties | O | 4 credits | 4G | R. Style | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course will introduce mass transport, heat conduction, charge transport, and flow in viscous liquids, with emphasis on their shared foundation in diffusive processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Students will learn how to create models describing transport processes. They will solve the resulting equations both analytically and numerically. They will apply these results to design materials processes and understand real-life experiments. A key takeaway will be the ability to construct simple order-of magnitude estimates and scaling relationships that can be applied to efficient data analysis and design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Projects and Applications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0514-00L | Computational Thinking Lab II | O | 3 credits | 1G + 2A | M. Kröger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | You are going to address, in groups, problems that are arising or may arise in the context of remaining courses of your studies, that cannot be solved analytically or manually within reasonable amounts of time, but solved computationally with the help of a programming language and computers. Knowledge of a computing language is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Participants get used to one or more collaborative tools, work actively in groups. They invent, set up, structure, plan, and attempt solving a problem that requires developing algorithms. They make use of existing, or invent novel, computational methods. Aspects that should be taken into account when developing algorithms or codes are: speed of execution, ease of use, small amount of adjustable parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Development of a project plan, including modules to be created, milestones to be reached, required input data and its aquisition, tests to be performed, work sharing. The project needs to be documented, and codes saved using a collaborative environment (github, vscode share). Ideally, several groups attack a similar problem so that their results can be directly compared (concerning speed of execution, algorithms, etc.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Information available at https://polyphys.mat.ethz.ch/education/courses/CTL-II.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | A. Shiflet, G.W. Shiflet, Introduction to Computational Science: Modeling and Simulation for the Sciences, Princeton University Press; 2nd edition (March 30, 2014) ISBN-13: 978-0691160719 M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford, United Kingdom) ISBN-10 9780198556459 D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series, Vol. 1 ISBN-10 0122673514 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Participants need a github account and should have attended part I of this course, or attend part I in parallel. Course information available at https://polyphys.mat.ethz.ch/education/courses/CTL-II.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-0511-00L | Capstone project | O | 6 credits | 6P | M. B. Willeke, J. F. Löffler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Acquisition of independent scientific-technical skills; project management; organization and undertaking of experiments; interpretation, scientifically and technically correct project presentation in oral and written form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Acquisition of independent scientific/technical skills; project management; organization and conducting of experiments; interpretation and scientifically/technically correct presentation of projects in oral and written form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Supervision by D-MATL research Groups. Groups of students (2 or 3 per group) each work on a research project throughout the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite: Successful participation in the "Praktika I - IV" (courses within the material science bachelor study at ETH) or comparable practical lab courses. |

- Page 1 of 2 All