Search result: Catalogue data in Autumn Semester 2022

Doctorate Materials Science Information
Further information at: Link
Subject Specialisation
Sustainable & Bioinspired Materials (MaP Doctoral School)
101-0527-10LMaterials and Constructions Restricted registration - show details W3 credits2GG. Habert, M. Posani
AbstractBuilding materials with a special focus on regenerative materials: earth, bio-based and reuse.
Sourcing, properties and performance, building envelope integration and detailing, sustainable building construction
ObjectiveSpecial focus on regenerative materials: earth, bio-based and reuse
The students will acquire knowledge in the following fields:
Fundamentals of material performance
Introduction to durability problems of building facades
Materials for the building envelope:
- Overview of structural materials and systems: concrete, steel, wood and bamboo, earth
- Insulating materials (bio-based vs conventional)
- Air barrier, vapour barrier and sealants
- Interior finishing
Assessment of materials and components behaviour and performance
Solutions for energy retrofitting of (historical) buildings
Aspects of sustainability and durability
Sustainable cement and concrete
Earth construction
Steel and bamboo
Timber construction
Building physic and conventional insulation
Bio-based insulation
101-0637-10LWood Structure and Function Restricted registration - show details
Number of participants limited to 15.
W3 credits2GI. Burgert, G. von Arx
AbstractThe course Wood structure and function conveys basic knowledge on the microstructure of softwoods and hardwoods as well as general and species-specific relationships between growth processes, wood properties and wood function in the living tree.
ObjectiveLearning target is a basic understanding of the anatomy of wood and the related impact of endogenous and exogenous factors. The students can learn how to distinguish common central European wood species at the macroscopic and microscopic level. A deeper insight will be given by wood identification exercises for softwood species. Further, the students will gain insight into the relationships between tree growth and wood properties with a specific focus on the wood function in the living tree.
ContentIn an introduction to wood anatomy, the general structural features of softwoods and hardwoods will be explained and factors of diversity and variability will be discussed. A specific focus is laid on common central European tree species with relevance in the wood sector, which will be studied in macro-and microstructural investigations. In the following, relationships between wood structure, properties and function in the living tree will be in the focus of the lectures. Topics covered are water transport, trends in wood anatomy within trees, environmental impact on wood anatomy, wood defects and their causes, tools to study wood properties over time, secondary changes in wood, and tree biomechanics.
102-0317-00LAdvanced Environmental Assessments
Master students in Environmental Engineering choosing module Ecological Systems Design are not allowed to enrol 102-0317-00 Advanced Environmental Assessments (3KP) as already included in 102-0307-01 Advanced Environmental, Social and Economic Assessments (5KP).
W3 credits2GS. Pfister, A. Kim
AbstractThis course deepens students' knowledge of the environmental assessment methodologies and their various applications.
ObjectiveThis course has the aim of deepening students' knowledge of the environmental assessment methodologies and their various applications. In particular, students completing the course should have the
- Ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- Knowledge about the current state of the scientific discussion and new research developments
- Ability to properly plan, conduct and interpret environmental assessment studies
- Knowledge of how to use LCA as a decision support tool for companies, public authorities, and consumers
Content- Inventory developments, transparency, data quality, data completeness, and data exchange formats
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Recent development in impact assessment
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Uncertainty analysis
- Subjectivity in environmental assessments
- Multicriteria analysis
- Case Studies
Lecture notesNo script. Lecture slides and literature will be made available on Moodle.
LiteratureLiterature will be made available on Moodle.
Prerequisites / NoticeBasic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Personal CompetenciesCritical Thinkingassessed
151-0509-00LAcoustics in Fluid Media: From Robotics to Additive Manufacturing
Note: The previous course title until HS21 "Microscale Acoustofluidics"
W4 credits3GD. Ahmed
AbstractThe course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics.
ObjectiveThe course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing.
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework.
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Personal CompetenciesCritical Thinkingassessed
Integrity and Work Ethicsassessed
Self-direction and Self-management assessed
151-0524-00LContinuum Mechanics IW4 credits2V + 1UA. E. Ehret
AbstractThe lecture deals with constitutive models that are relevant for the design and analysis of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity and viscoplasticity. The basic concepts of homogenization and laminate theory are introduced. Theoretical models are complemented by examples of engineering applications and experiments.
ObjectiveBasic theories for solving continuum mechanics problems of engineering applications, with particular focus on constitutive models.
ContentAnisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments
Lecture notesyes
227-0393-10LBioelectronics and Biosensors Information W6 credits2V + 2UJ. Vörös, M. F. Yanik
AbstractThe course introduces bioelectricity and the sensing concepts that enable obtaining information about neurons and their networks. The sources of electrical fields and currents in the context of biological systems are discussed. The fundamental concepts and challenges of measuring bioelectronic signals and the basic concepts to record optogenetically modified organisms are introduced.
ObjectiveDuring this course the students will:
- learn the basic concepts in bioelectronics including the sources of bioelectronic signals and the methods to measure them
- be able to solve typical problems in bioelectronics
- learn about the remaining challenges in this field
ContentLecture topics:

1. Introduction

Sources of bioelectronic signals
2. Membrane and Transport
3-4. Action potential and Hodgkin-Huxley

Measuring bioelectronic signals
5. Detection and Noise
6. Measuring currents in solutions, nanopore sensing and patch clamp pipettes
7. Measuring potentials in solution and core conductance model
8. Measuring electronic signals with wearable electronics, ECG, EEG
9. Measuring mechanical signals with bioelectronics

In vivo stimulation and recording
10. Functional electric stimulation
11. In vivo electrophysiology

Optical recording and control of neurons (optogenetics)
12. Measuring neurons optically, fundamentals of optical microscopy
13. Fluorescent probes and scanning microscopy, optogenetics, in vivo microscopy

14. Measuring biochemical signals
Lecture notesA detailed script is provided to each lecture including the exercises and their solutions.
LiteraturePlonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition)
Prerequisites / NoticeThe course requires an open attitude to the interdisciplinary approach of bioelectronics.
In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.).
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
327-1101-00LBiomineralizationW2 credits2VK.‑H. Ernst
AbstractThe course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.
ObjectiveThe course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.
ContentBiomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization
Lecture notesScript with more than 600 pages with many illustrations will be distributed free of charge.
Literature1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York
2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford
3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003
Prerequisites / NoticeNo special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.
327-1221-00LBiological and Bio-Inspired Materials Information W4 credits3GA. R. Studart, I. Burgert, R. Nicolosi Libanori, G. Panzarasa
AbstractThe aim of this course is to impart knowledge on the underlying principles governing the design of biological materials and on strategies to fabricate synthetic model systems whose structural organization resembles those of natural materials.
ObjectiveThe course first offers a comprehensive introduction to evolutive aspects of materials design in nature and a general overview about the most common biopolymers and biominerals found in biological materials. Next, current approaches to fabricate bio-inspired materials are presented, followed by a detailed evaluation of their structure-property relationships with focus on mechanical, optical, surface and adaptive properties.
ContentThis course is structured in 3 blocks:
Block (I): Fundamentals of engineering in biological materials
- Biological engineering principles
- Basic building blocks found in biological materials

Block (II): Replicating biological design principles in synthetic materials
- Biological and bio-inspired materials: polymer-reinforced and ceramic-toughened composites
- Lightweight biological and bio-inspired materials
- Functional biological and bio-inspired materials: surfaces, self-healing and adaptive materials

Block (III): Bio-inspired design and systems
- Mechanical actuation - plant systems
- Bio-inspiration in the built environment
Lecture notesCopies of the slides will be made available for download before each lecture.
LiteratureThe course is mainly based on the books listed below. Additional references will be provided during the lectures.

1. M. A. Meyers and P-Y. Chen; Biological Materials Science - Biological Materials, Bioinspired Materials and Biomaterials. (Cambridge University Press, 2014).
2. P. Fratzl, J. W. C. Dunlop and R. Weinkamer; Materials Design Inspired by Nature: Function Through Inner Architecture. (The Royal Society of Chemistry, 2013).
3. A. R. Studart, R. Libanori, R. M. Erb, Functional Gradients in Biological Composites in Bio- and Bioinspired Nanomaterials. (Wiley-VCH Verlag GmbH & Co. KGaA, 2014), pp. 335-368.
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesfostered
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
376-0021-00LMaterials and Mechanics in MedicineW4 credits3GM. Zenobi-Wong, J. G. Snedeker
AbstractUnderstanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
ObjectiveUnderstanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
ContentBiomaterials, Tissue Engineering, Tissue Biomechanics, Implants.
Lecture notescourse website on Moodle
LiteratureIntroduction to Biomedical Engineering, 3rd Edition 2011,
Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796
Academic Press
376-0121-00LMultiscale Bone Biomechanics Restricted registration - show details
Number of participants limited to 30
W6 credits4SR. Müller, X.‑H. Qin
AbstractThe seminar provides state-of-the-art insight to the biomechanical function of bone from molecules, to cells, tissue and up to the organ. Multiscale imaging and simulation allows linking different levels of hierarchy, where systems biology helps understanding the mechanobiological response of bone to loading and injury in scenarios relevant for personalized health and translational medicine.
ObjectiveThe learning objectives include
1. advanced knowledge of the state-of-the-are in multiscale bone biomechanics;
2. basic understanding of the biological principles governing bone in health, disease and treatment from molecules, to cells, tissue and up to the organ;
3. good understanding of the prevalent biomechanical testing and imaging techniques on the various levels of bone hierarchy;
4. practical implementation of state-of-the-art multiscale simulation techniques;
5. improved programing skills through the use of python;
6. hands on experience in designing solutions for clinical and industrial problems;
7. encouragement of critical thinking and creating an environment for independent and self-directed studying.
ContentBone is one of the most investigated biological materials due to its primary function of providing skeletal stability. Bone is susceptible to different local stimuli including mechanical forces and has great capabilities in adapting its mechanical properties to the changes in its environment. Nevertheless, aging or hormonal changes can make bone lose its ability to remodel appropriately, with loss of strength and increased fracture risk as a result, leading to devastating diseases such as osteoporosis.
To better understand the biomechanical function of bone, one has to understand the hierarchical organization of this fascinating material down from the molecules, to the cells, tissue and up to the organ. Multiscale imaging and simulation allow to link these different levels of hierarchy. Incorporating systems biology approaches, not only biomechanical strength of the material can be assessed but also the mechanobiological response of the bone triggered by loading and injury in scenarios relevant for personalized health. Watching cells working together to build and repair bone in a coordinated fashion is a spectacle, which will need dynamic image content and deep discussions in the lecture room to probe the imagination of the individual student interested in the topic. Lastly, state-of-the-art developments in tissue engineering and regeneration, 3D bioprinting and bio-manufacturing and organoid technology will be highlighted towards personalized health.

For the seminar, concepts of video lectures will be used in a flipped classroom setup, where students can study the basic biology, engineering, and mathematical concepts in video tutorials online (TORQUES). All videos and animations will be incorporated in Moodle and PolyBook allowing studying and interactive course participation online. It is anticipated that the students need to prepare 2x45 minutes for the study of the actual lecture material. The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup. In the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturers may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will have to form small groups to try to solve such problems and to present their solutions for advanced multiscale investigation of bone ranging from basic science to clinical application. Towards the end of the semester, students will have to present self-selected publications associated with the different topics of the lecture identified through PubMed or the Web of Science.
Lecture notesMaterial will be provided on Moodle and eColab.
Prerequisites / NoticePrior experience with the programming language python is beneficial but not mandatory. ETH offers courses for practical programming with python.
376-1351-00LMicro/Nanotechnology and Microfluidics for Biomedical ApplicationsW2 credits2VE. Delamarche
AbstractThis course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beamers for patterning proteins, hard-disk technology for biosensing and microfluidics for point-of-care diagnostics are just a few examples of the covered topics.
ObjectiveThe main objective of the course is to introduce micro/nanotechnology and microfluidics to students having any technical background. The course is multi-disciplinary and covers a broad range of techniques. For each lecture, a brief historical perspective is given to illustrate by whom and how the techniques were invented.

The course should familiarize the students with the techniques used in micro/nanotechnology, cleanroom microfabrication, and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and for medical applications.

The second objective is to have life sciences students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed.
ContentMostly formal lectures (2 × 45 min), with few specific guest lectures on topics of particular relevance. For example, an introduction to cleanroom and micro/nanotechnology instruments and 3D printing will be provided. Last 3 weeks would be dedicated to the presentation and evaluation of projects by students (2 to 3 students per team). For this, about 12 recent technologies are listed and each team picks a technology and makes a short report and presentation describing how it works, its strengths and weaknesses, and describes what problem it solves.

In terms of technical content, the lectures will cover:
- an overview of the microelectronic industry, Moore’s law, field-effect transistors, next-generation DNA sequencing
- liquid crystal displays, organic light emitting diodes, electrophoretic displays, micromirrors and beamers, photopatterning of proteins and cells, optogenetics, and flexible displays and electronics
- hard disk drives and the giant magnetoresistance effect, magnetic nanoparticles, photonics, magnetic sensing and optical biosensing
- cleanroom techniques and instruments, from design to microfabrication of simple devices and microfluidics, examples of DNA microarrays
- the principles of microfluidics, microfluidic functions and fabrication, from microfluidics for research to point-of-care diagnostics, and the (infamous) history of Theranos, as well as some discussions on diagnostics for COVID, R0, and (im)precision of diagnostic devices and why it matters
- specifically for the 2022 course, Yuksel Temiz, a master of Arduino programming and do-it-yourself electronics, will kick-off the course and will show how to make 20$ electronic components that are synergistic to microfluidic devices and that can be controlled using a smartphone
- the 2022 course will also include 3D printing for the fast prototyping of microfluidic devices
376-1622-00LPractical Methods in Tissue Engineering Restricted registration - show details
Number of participants limited to 12.
W5 credits4PM. Zenobi-Wong, S. J. Ferguson, S. Grad, S. Schürle-Finke
AbstractThe goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.
ObjectivePractical exercises on topics including sterile cell culture, light microscopy and histology, and biomaterials are covered. Practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.
Prerequisites / NoticeA Windows laptop (or Windows on Mac) is required for certain of the lab modules.
376-1714-00LBiocompatible MaterialsW4 credits3VK. Maniura, M. Rottmar, M. Zenobi-Wong
AbstractIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
ObjectiveThe course covers the follwing topics:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.
ContentIntroduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.
Lecture notesHandouts are deposited online (moodle).
- Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
- Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts and references therin.
376-1974-00LColloquium in Biomechanics Information W2 credits2KB. Helgason, P. Chansoria, S. J. Ferguson, R. Müller, D. K. Ravi, J. G. Snedeker, W. R. Taylor, M. Zenobi-Wong
AbstractCurrent topics in biomechanics presented by speakers from academia and industry.
ObjectiveGetting insight into actual areas and problems of biomechanics.
529-0615-01LBiochemical and Polymer Reaction EngineeringW6 credits3GP. Arosio
AbstractPolymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins.
ObjectiveThe aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.
ContentWe will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.
Lecture notesScripts are available on the web page of the Arosio-group: Link
Additional handout of slides will be provided during the lectures.
LiteratureR.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001
D. Ramkrishna, Population Balances, Academic Press, 2000
H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995
529-0837-01LBiomicrofluidic Engineering Restricted registration - show details
Number of participants limited to 25.
W6 credits3GA. de Mello
AbstractMicrofluidics describes the behaviour, control and manipulation of fluids geometrically constrained within sub-uL environments. Microfluidic devices enable physical and chemical processes to be controlled with exquisite precision and in an fast and efficient manner. This course introduces the underlying concepts, features and applications of microfluidic systems in the chemical and life sciences.
ObjectiveWe will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis.

A central component of this course is a research project. This will allow students to develop a practical understanding of the benefits of miniaturization in chemical and biological experimentation. Projects will be performed in groups of between four and six students and will include both experimental and simulation aspects. Each group, under the guidance of a mentor, will plan and execute a novel research project. The results of this activity will be disseminated through an 'academic-style" research article and a "conference-style" oral presentation. Course grades will be evaluated through both a written exam and the project grade.
ContentSpecific topics covered in the course include, but are not limited to:

1. Theoretical Concepts
Scaling laws, features of thermal/mass transport, diffusion, basic description of fluid flow in small volumes, microfluidic mixing strategies.

2. Microfluidic Device Manufacture
Basic principles of conventional lithography of rigid materials, ‘soft’ lithography, polymer machining (injection molding, hot embossing, and 3D-printing).

3. Electrokinetics
Principles of electrophoresis, electroosmosis, high performance capillary electrophoresis, electrokinetic scaling laws, chip-based electrophoresis and isoelectric focusing.

4. Mass Transfer Phenomena
Key features of mass transport in microfluidic systems, diffusive transport, diffusion-convection, Péclet number, Taylor-Aris diffusion, chaotic mixing and Damköhler numbers.

5. Heat Transfer Phenomena
Key features of thermal transport in microfluidic systems, conduction, convection, heat transfer by convection in internal flows, heat transfer processes in microfluidic devices.

6. Microfluidic Systems for Materials Synthesis
Microfluidic reactors for the controlled synthesis of colloidal nanomaterials, advanced automation for bespoke materials discovery & characterization.

7. Point-of-Care Diagnostics
Microscale tools for diagnostics, challenges associated with point-of-care (PoC) diagnostic testing, requirements for PoC devices, common PoC device formats, applications of PoC diagnostics in the developing world.

8. Microscale DNA Amplification
Amplification and analysis of nucleic acids using batch, continuous flow and droplet-based microfluidic reactors.

9. Small volume Molecular Detection
Spectroscopic approaches for analyte detection in small volumes with a particular focus on single molecule detection.

10. Droplets and Segmented Flows
Formation, manipulation and use of liquid/liquid segmented flows in chemical and biological experimentation.

11. Single Cell Analysis
Applications of microfluidic tools in cellular analysis, flow cytometry, enzymatic assays and single cell analysis.
Lecture notesLecture handouts, background literature, problem sheets and notes will be provided electronically through the course Moodle site.
LiteratureThere is no set text for the course. All relevant literature will be provided electronically through the course Moodle site.
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
636-0104-00LBiophysical MethodsW4 credits3GD. J. Müller
AbstractStudents will be imparted knowledge in basic and advanced biophysical methods applied to problems in molecular biotechnology. The course is fundamental to applying the methods in their daily and advanced research routines. The students will learn the physical basis of the methods as well as their limitations and possibilities to address existing and future topics in molecular biotechnology.
ObjectiveGain of interdisciplinary competence in experimental and theoretical research, which qualifies for academic scientific work (master's or doctoral thesis) as well as for research in a biotechnology or a pharmaceutical company. The module is of general use in courses focused on modern biomolecular technologies, systems biology and systems engineering.
ContentThe students will learn basic and advanced knowledge in applying biophysical methods to address problems and overcome challenges in biotechnology, cell biology and life sciences in general. The biological and physical possibilities and limitations of the methods will be discussed and critically evaluated. By the end of the course the students will have assimilated knowledge on a portfolio of biophysical tools widening their research capabilities and aptitude.
The biophysical methods to be taught will include:
• Light microscopy: Resolution limit of light microscopy, fluorescence, GFP, fluorescence microscopy, DIC, phase contrast, difference between wide-field and confocal microscopy
• Super resolution optical microscopy: STED, PALM, STORM, other variations
• Electron microscopy: Scanning electron microscopy, transmission electron microscopy, electron tomography, cryo-electron microscopy, single particle analysis and averaging, tomography, sectioning, negative stain
• X-ray, electron and neutron diffraction
• MRI Imaging
• Scanning tunnelling microscopy and atomic force microscopy
• Patch clamp technologies: Principles of patch clamp analysis and application. Various patch clamp approaches used in research and industry
• Surface plasmon resonance-based biosensors
• Molecular pore-based sensors and sequencing devices
• Mechanical molecular and cellular assembly devices
• Optical and magnetic tweezers
• CD spectroscopy
• Optogenetics
• Molecular dynamics simulations
Lecture notesHand out will be given to students at lecture.
LiteratureMethods in Molecular Biophysics (5th edition), Serdyuk et al., Cambridge University Press
Biochemistry (5th edition), Berg, Tymoczko, Stryer; ISBN 0-7167-4684-0, Freeman
Bioanalytics, Lottspeich & Engels, Wiley VCH, ISBN-10: 3527339191
Cell Biology, Pollard & Earnshaw; ISBN:0-7216-3997-6, Saunder, Pennsylvania
Methods in Modern Biophysics, Nölting, 3rd Edition, Springer, ISBN-10: 3642030211
Prerequisites / NoticeThe module is composed of 3 SWS (3 hours/week): 2-hour lecture, 1-hour seminar. For the seminar, students will prepare oral presentations on specific in-depth subjects with/under the guidance of the teacher.
752-3105-00LPhysiology Guided Food Structure and Process DesignW3 credits2VE. J. Windhab, M. Devezeaux de Lavergne, B. von der Weid, T. Wooster
AbstractA “cook-and look” approach to process design is no longer applicable in the current environmental, nutritional and competitive constraints. The modern R&D chemical/food engineer should have a clear focus on the desired structure that needs to be achieved to design a process line or a processing equipment, coupled with in depth knowledge of the processed materials.
ObjectiveThe objective of this course is to highlight the intimate links between human physiology and product sensory and nutritional functions. To optimize these functions, an understanding of the physiological functions that interact and encode the actions of those product structures must be well understood.

Therefore the objective of this course is for students to be equipped with a skill set that will encompass basic digestion and sensory physiology knowledge and food structures.

The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.
  •  Page  1  of  1