Search result: Catalogue data in Autumn Semester 2022
Electrical Engineering and Information Technology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master Studies (Programme Regulations 2018) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy and Power Electronics The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Energy and Power Electronics", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html. The individual study plan is subject to the tutor's approval. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses These core courses are particularly recommended for the field of "Energy and Power Electronics". You may choose core courses form other fields in agreement with your tutor. A minimum of 24 credits must be obtained from core courses during the MSc EEIT. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Foundation Core Courses Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0113-00L | Power Electronics | W | 6 credits | 4G | J. W. Kolar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; Isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines | W | 6 credits | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers |
- Page 1 of 1