# Search result: Catalogue data in Autumn Semester 2022

Electrical Engineering and Information Technology Master
Master Studies (Programme Regulations 2008)
Major Courses
A total of 42 CP must be achieved during the Master Programme. The individual study plan is subject to the tutor's approval.
Communication
Recommended Subjects
These courses are recommended, but you are free to choose courses from any other special field. Please consult your tutor.
NumberTitleTypeECTSHoursLecturers
227-0102-00LDiscrete Event Systems W6 credits4GL. Josipovic, L. Vanbever, R. Wattenhofer
AbstractIntroduction to discrete event systems. We start out by studying popular models of discrete event systems. In the second part of the course we analyze discrete event systems from an average-case and from a worst-case perspective. Topics include: Automata and Languages, Specification Models, Stochastic Discrete Event Systems, Worst-Case Event Systems, Verification, Network Calculus.
ObjectiveOver the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss).

The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems.

In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.
Content1. Introduction
2. Automata and Languages
3. Smarter Automata
4. Specification Models
5. Stochastic Discrete Event Systems
6. Worst-Case Event Systems
7. Network Calculus
Lecture notesAvailable
Literature[bertsekas] Data Networks
Dimitri Bersekas, Robert Gallager
Prentice Hall, 1991, ISBN: 0132009161

[borodin] Online Computation and Competitive Analysis
Allan Borodin, Ran El-Yaniv.
Cambridge University Press, 1998

[boudec] Network Calculus
J.-Y. Le Boudec, P. Thiran
Springer, 2001

[cassandras] Introduction to Discrete Event Systems
Christos Cassandras, Stéphane Lafortune.
Kluwer Academic Publishers, 1999, ISBN 0-7923-8609-4

[fiat] Online Algorithms: The State of the Art
A. Fiat and G. Woeginger

[hochbaum] Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin)
D. Hochbaum

[schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik)
T. Schickinger, A. Steger
Springer, Berlin, 2001

[sipser] Introduction to the Theory of Computation
Michael Sipser.
PWS Publishing Company, 1996, ISBN 053494728X
227-0103-00LControl Systems W6 credits2V + 2UF. Dörfler
AbstractStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ObjectiveStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
ContentProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteratureK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Prerequisites / NoticePrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0116-00LVLSI 1: HDL Based Design for FPGAs W6 credits5GF. K. Gürkaynak, L. Benini
AbstractThis first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits.
ObjectiveUnderstand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools.
ContentThis course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include:
- Overview on design methodologies and fabrication depths.
- Levels of abstraction for circuit modeling.
- Organization and configuration of commercial field-programmable components.
- FPGA design flows.
- Dedicated and general purpose architectures compared.
- How to obtain an architecture for a given processing algorithm.
- Meeting throughput, area, and power goals by way of architectural transformations.
- Hardware Description Languages (HDL) and the underlying concepts.
- SystemVerilog
- Register Transfer Level (RTL) synthesis and its limitations.
- Building blocks of digital VLSI circuits.
- Functional verification techniques and their limitations.
- Modular and largely reusable testbenches.
- Assertion-based verification.
- Synchronous versus asynchronous circuits.
- The case for synchronous circuits.
- Periodic events and the Anceau diagram.
- Case studies, ASICs compared to microprocessors, DSPs, and FPGAs.

During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout.
Lecture notesTextbook and all further documents in English.
LiteratureH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Prerequisites / NoticePrerequisites:
Basics of digital circuits.

Examination:
In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German.

Further details:
227-0166-00LAnalog Integrated Circuits W6 credits2V + 2UT. Jang
AbstractThis course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies.
ObjectiveIntegrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems.
The basic elements, design issues and techniques for analog integrated circuits will be taught in this course.
ContentReview of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors.
The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements.
Lecture notesHandouts of presented slides. No script but an accompanying textbook is recommended.
LiteratureBehzad Razavi, Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Engineering) 1st or 2nd edition, McGraw-Hill Education
227-0301-00LOptical Communication FundamentalsW6 credits2V + 1U + 1PJ. Leuthold
AbstractThe path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements.
ObjectiveAn in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications.
Content* Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements.

* Chapter 2: The Transmitter: Components of a transmitter, Lasers, The spectrum of a signal, Optical modulators, Modulation formats.

* Chapter 3: The Optical Fiber Channel: Geometrical optics, The wave equations in a fiber, Fiber modes, Fiber propagation, Fiber losses, Nonlinear effects in a fiber.

* Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations.

* Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection teqchniques, Error correction coding.

* Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA.

* Chapter 7: Optical Amplifiers : Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers.
Lecture notesLecture notes are handed out.
LiteratureGovind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010
Prerequisites / NoticeFundamentals of Electromagnetic Fields & Bachelor Lectures on Physics.
227-0423-00LNeural Network Theory
Does not take place this semester.
W4 credits2V + 1UH. Bölcskei
AbstractThe class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, capacity of separating surfaces, generalization, fundamental limits of deep neural network learning, VC dimension.
ObjectiveAfter attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of neural networks.
Content1. Universal approximation with single- and multi-layer networks

2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory

3. Fundamental limits of deep neural network learning

4. Geometry of decision surfaces

5. Separating capacity of nonlinear decision surfaces

6. Vapnik-Chervonenkis (VC) dimension

7. VC dimension of neural networks

8. Generalization error in neural network learning
Lecture notesDetailed lecture notes are available on the course web page
Prerequisites / NoticeThis course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.
227-0447-00LImage Analysis and Computer Vision W6 credits3V + 1UE. Konukoglu, F. Yu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
227-0468-00LAnalog Signal Processing and Filtering
Suitable for Master Students as well as Doctoral Students.
W6 credits2V + 2UH. Schmid
AbstractThis lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers.
ObjectiveThis lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups.

The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves.
ContentAt the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits on a system level (analog continuous-time, analog discrete-time, mixed-signal and digital) and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behaviour of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level.

This lecture does not go down to the details of transistor implementations. The lecture "227-0166-00L Analog Integrated Circuits" complements This lecture very well in that respect.
Lecture notesThe base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content.

The graph methods are also supported with teaching videos: Link , and a Python-based open-source tool to manipulate graphs is available on Link

Some material is protected by password; students from ETHZ who are interested can write to Link to ask for the password even if they do not attend the lecture.
Prerequisites / NoticePrerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters.

Knowledge of the Laplace transform and z transform and their interpretation (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary.
Competencies
 Subject-specific Competencies Concepts and Theories assessed Techniques and Technologies assessed Method-specific Competencies Analytical Competencies assessed Decision-making fostered Media and Digital Technologies fostered Problem-solving assessed Project Management fostered Social Competencies Communication fostered Cooperation and Teamwork fostered Customer Orientation fostered Leadership and Responsibility fostered Self-presentation and Social Influence fostered Sensitivity to Diversity fostered Negotiation fostered Personal Competencies Adaptability and Flexibility fostered Creative Thinking fostered Critical Thinking assessed Integrity and Work Ethics fostered Self-awareness and Self-reflection fostered Self-direction and Self-management fostered
227-0477-00LAcoustics IW3 credits2GK. Heutschi
AbstractIntroduction to the fundamentals of acoustics in the field of sound field calculations, measurement of acoustical events, outdoor sound propagation and room acoustics of large and small enclosures.
ObjectiveUnderstanding of the basic acoustical concepts and methods. Ability to understand the technical and scientific literature. Confidence in the use of measuring instruments.
ContentFundamentals of acoustics, measurement and analysis of acoustical events, anatomy and properties of the ear, outdoor sound propagation, absorption and transmission of sound, room acoustics of large and small enclosures, architectural acoustics, noise and noise control, calculation of sound fields.
Lecture notesyes
Competencies
 Subject-specific Competencies Concepts and Theories assessed Method-specific Competencies Analytical Competencies assessed Problem-solving assessed Social Competencies Communication assessed Personal Competencies Creative Thinking assessed Critical Thinking assessed Self-direction and Self-management fostered
252-0535-00LAdvanced Machine Learning W10 credits3V + 2U + 4AJ. M. Buhmann, C. Cotrini Jimenez
AbstractMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
ObjectiveStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
ContentThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
Lecture notesNo lecture notes, but slides will be made available on the course webpage.
LiteratureC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Prerequisites / NoticeThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
263-4640-00LNetwork Security W8 credits2V + 2U + 3AA. Perrig, S. Frei, M. Legner, K. Paterson
AbstractSome of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems.
This course provides an in-depth study of network attack techniques and methods to defend against them.
Objective- Students are familiar with fundamental network-security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess vulnerabilities in software systems and network protocols.
- Students have an in-depth understanding of a range of important state-of-the-art security technologies.
- Students can implement network-security protocols based on cryptographic libraries.
ContentThe course will cover topics spanning four broad themes with a focus on the first two themes:
(1) network defense mechanisms such as public-key infrastructures, TLS, VPNs, anonymous-communication systems, secure routing protocols, secure DNS systems, and network intrusion-detection systems;
(2) network attacks such as hijacking, spoofing, denial-of-service (DoS), and distributed denial-of-service (DDoS) attacks;
(3) analysis and inference topics such as traffic monitoring and network forensics; and
(4) new technologies related to next-generation networks.

In addition, several guest lectures will provide in-depth insights into specific current real-world network-security topics.
Prerequisites / NoticeThis lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a communication networks lecture like 252-0064-00L or 227-0120-00L.
Basic knowledge of information security or applied cryptography as taught in 252-0211-00L or 263-4660-00L is beneficial, but an overview of the most important cryptographic primitives will be provided at the beginning of the course.
The course will involve several graded course projects. Students are expected to be familiar with a general-purpose or network programming language such as C/C++, Go, Python, or Rust.
Competencies
 Subject-specific Competencies Concepts and Theories assessed Techniques and Technologies assessed Method-specific Competencies Analytical Competencies assessed Decision-making assessed Media and Digital Technologies assessed Problem-solving assessed Project Management assessed Social Competencies Communication fostered Cooperation and Teamwork fostered Customer Orientation fostered Leadership and Responsibility fostered Self-presentation and Social Influence fostered Sensitivity to Diversity fostered Negotiation fostered Personal Competencies Adaptability and Flexibility fostered Creative Thinking assessed Critical Thinking assessed Integrity and Work Ethics fostered Self-awareness and Self-reflection fostered Self-direction and Self-management assessed
401-3055-64LAlgebraic Methods in Combinatorics
Does not take place this semester.
W6 credits2V + 1UB. Sudakov
AbstractCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas.
ObjectiveThe students will get an overview of various algebraic methods for solving combinatorial problems. We expect them to understand the proof techniques and to use them autonomously on related problems.
ContentCombinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown out of this early stage and often relies on deep, well-developed tools.

One of the main general techniques that played a crucial role in the development of Combinatorics was the application of algebraic methods. The most fruitful such tool is the dimension argument. Roughly speaking, the method can be described as follows. In order to bound the cardinality of of a discrete structure A one maps its elements to vectors in a linear space, and shows that the set A is mapped to linearly independent vectors. It then follows that the cardinality of A is bounded by the dimension of the corresponding linear space. This simple idea is surprisingly powerful and has many famous applications.

This course provides a gentle introduction to Algebraic methods, illustrated by examples and focusing on basic ideas and connections to other areas. The topics covered in the class will include (but are not limited to):

Basic dimension arguments, Spaces of polynomials and tensor product methods, Eigenvalues of graphs and their application, the Combinatorial Nullstellensatz and the Chevalley-Warning theorem. Applications such as: Solution of Kakeya problem in finite fields, counterexample to Borsuk's conjecture, chromatic number of the unit distance graph of Euclidean space, explicit constructions of Ramsey graphs and many others.

The course website can be found at
Lecture notesLectures will be on the blackboard only, but there will be a set of typeset lecture notes which follow the class closely.
Prerequisites / NoticeStudents are expected to have a mathematical background and should be able to write rigorous proofs.
227-0147-10LVLSI 3: Full-Custom Digital Circuit Design W6 credits2V + 3UC. Studer, O. Castañeda Fernández
AbstractThis third course in our VLSI series is concerned with full-custom digital integrated circuits. The goals include learning the design of digital circuits on the schematic, layout, gate, and register-transfer levels. The use of state-of-the-art CAD software (Cadence Virtuoso) in order to simulate, optimize, and characterize digital circuits is another important topic of this course.
ObjectiveAt the end of this course, you will
• understand the design of the main building blocks of state-of-the-art digital integrated circuits
• be able to design and optimize digital integrated circuits on the schematic, layout, and gate levels
• be able to use standard industry software (Cadence Virtuoso) for drawing, simulating, and characterizing digital circuits
• understand the performance trade-offs between delay, area, and power consumption
ContentThe third VLSI course begins with the basics of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) and moves up the stack towards logic gates and increasingly complex digital circuit structures. The topics of this course include:
• Nanometer MOSFETs
• Static and dynamic behavior of complementary MOS (CMOS) inverters
• CMOS gate design, sizing, and timing
• Full-custom standard-cell design
• Wire models and parasitics
• Latch and flip-flop circuits
• Gate-level timing analysis and optimization
• Static and dynamic power consumption; low-power techniques
• Alternative logic styles (dynamic logic, pass-transistor logic, etc.)
• Arithmetic and logic circuits
• Fixed-point and floating-point arithmetic
• Synchronous and asynchronous design principles
• Memory circuits (ROM, SRAM, and DRAM)
• In- and near-memory processing architectures
• Full-custom accelerator circuits for machine learning
The exercises are concerned with schematic entry, layout, and simulation of digital integrated circuits using a disciplined standard-cell-based approach with Cadence Virtuoso.
LiteratureN. H. E. Weste and D. M Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Ed.), Addison-Wesley
Prerequisites / NoticeVLSI 3 can be taken in parallel with “VLSI 1: HDL-based design for FPGAs” and is designed to complement the topics of this course. Basic analog circuit knowledge is required.
Competencies
 Subject-specific Competencies Concepts and Theories assessed Techniques and Technologies assessed Method-specific Competencies Analytical Competencies assessed Problem-solving assessed
•  Page  1  of  1