Search result: Catalogue data in Autumn Semester 2022
Health Sciences and Technology Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bachelor Studies (Programme Regulations 2020) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Focus Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Medical Technology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0386-00L | Biomedical Engineering | W | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the basic vocabulary of biomedical engineering and getting familiar with concepts that govern common medical instruments and the most important organs from an engineering point of view. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. It also serves as an introduction to the field for students of the ITET, MAVT, HEST and other bachelor programs. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | History of BME and the role of biomedical engineers. Ethical issues related to BME. Biomedical sensors both wearable and also biochemical sensors. Bioelectronics: Nernst equation, Donnan equilibrium, equivalent circuits of biological membranes and bioelectronic devices. Bioinformatics: genomic and proteomic tools, databases and basic calculations. Equations describing basic reactions and enzyme kinetics. Medical optics: Optical components and systems used in hospitals. Basic concepts of tissue engineering and organ printing. Biomaterials and their medical applications. Function of the heart and the circulatory system. Transport and exchange of substances in the human body, compartment modeling. The respiratory system. Bioimaging. Orthopedic biomechanics. Lectures (2h), discussion of practical exercises (1h) and homework exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND moodle page of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific requirements, BUT ITET, MAVT, PHYS students will have to learn a lot of new words related to biochemistry, biology and medicine, while HEST and BIOL students will have to grasp basic engineering concepts (circuits, equations, etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0021-00L | Materials and Mechanics in Medicine | W | 4 credits | 3G | M. Zenobi-Wong, J. G. Snedeker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | course website on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Introduction to Biomedical Engineering, 3rd Edition 2011, Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796 Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-00L | Biocompatible Materials | W | 4 credits | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1220-00L | Rehabilitation and Inclusion | W | 3 credits | 2G | R. Riener | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course presents origins and prevention of different physical, sensory, mental impairments, their treatments, and methods of assistance in public and home environments. Rehabilitation is put into a larger context providing insights into healthcare systems, health economy, accessibility, barrier-free architecture, para-sports, legal & regulatory aspects, disability policy, and inclusion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | With this lecture, we want to not only transfer a broad knowledge about rehabilitation and inclusion, but also raise awareness about the challenges and needs of people with impairments, the economy and the overall society. Students should learn about the complex and multi-facetted interaction of care, treatment, assistance, reimbursement, accessibility, legal regulation, and social inclusion. This knowledge and awareness should be presented in a multi-modal way using interactive tools and organizing group/plenar discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will cover the following topics: • Introduction: definition of terms, historical and legal background, role of the UNO, WHO, ICRC • Origins: reasons and origins of physical, sensory and mental impairments; surgical and pharmaceutical treatments • Therapy: physical therapy, occupational therapy, speech therapy, psychotherapy • Technological support: Robot-aided therapy, Virtual Reality, muscle stimulation, Brain-Computer Interfaces (BCIs) • Home therapy: personal assistance, mobile health systems, tele-monitoring, tele-therapy • Assistive technologies: gait assistance, prosthesis, orthoses, seeing/hearing aids, etc. • Social inclusion: definition of normality and belongingness, social behaviours, UN-BRK, etc. • Accessibility: national and international aspects of accessibility • Health economy in rehabilitation: public and private cost models, health insurance, SUVA, IV • Barrier-free building and living: environmental obstacles, norms in architecture, inclusive design • Parasports: history of Olympics and Paralympics, Special Olympics, Deaflympics, Cybathlon • Policy: health, social, equal opportunity, disability • Regulatory affairs: ethics committees, Swissmedic, Bundesamt für Gesundheit (BAG), law and disability • Prevention: primary and secondary prevention, social prevention |
- Page 1 of 1