Search result: Catalogue data in Autumn Semester 2022
Chemical and Bioengineering Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Subjects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Catalysis and Separation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0927-00L | Rate-Controlled Separations in Fine Chemistry | W+ | 6 credits | 3V + 1U | M. Mazzotti, V. Becattini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts during the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommendations for text books will be covered in the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0617-01L | Catalysis Engineering | W+ | 6 credits | 3G | J. Pérez-Ramírez, S. J. Mitchell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Heterogeneous catalysis, an enabling foundation of the chemical industry, spearheads innovation toward key sustainability targets in clean energy, carbon neutrality, and zero waste. The Catalysis Engineering course provides students with concepts bridging from the molecular-level design of catalytic materials to their technical application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | To accelerate the discovery and implementation of sustainable technologies, this vibrant discipline is constantly refining its design principles, particularly at the nanoscale, a shift facilitated by the availability of increasingly powerful tools that permit the continued development of fundamental knowledge over different time and length scales. During this course, you will learn current concepts for the defossilization of the chemical industry and strategies for achieving this goal from idea to implementation. By introducing topical case studies both in lectures and through a semester project, you will see aspects of catalyst synthesis and characterization, kinetics, mass and heat transport, deactivation and process design, sustainability metrics, and the potential of digital tools to guide catalyst design. Since this area is rapidly advancing and no textbooks are available, the lectures follow slides and journal articles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The aspects described above will be demonstrated through industrially-relevant examples such as: - Natural gas valorization - CO2 conversion to energy vectors - Plastics upcycling - Concept for a glycerol biorefinery - Halogen chemistry on catalytic surfaces - Ensemble design for selective hydrogenations - Single-atom catalysis - Hierarchical zeolite catalysts A supervised semester project conducted in small groups provides a taster of catalysis research on a timely topic. Students will learn basic skills including critical literature analysis, problem definition and solving, methods of catalyst synthesis, characterization, and testing, and data evaluation and communication through a short talk. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The course material is based on slides and journal articles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | It is assumed that students selecting this course are familiar with basic concepts of chemistry and catalysis (chemistry or chemical engineering background). Other students are welcome to contact us to discuss the requirement for prior knowledge. |
- Page 1 of 1