Search result: Catalogue data in Autumn Semester 2022

Process Engineering Master Information
Core Courses
NumberTitleTypeECTSHoursLecturers
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) I Information W4 credits4GS. M. Martin, J. H. Walther
AbstractThis course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering.
Learning objectiveWith manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind.

The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures.
Content1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86)

2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP)

3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models

4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis

5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods
Lecture noteshttps://www.cse-lab.ethz.ch/teaching/hpcse-i_hs22/
Class notes, handouts
Literature• An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann
• Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press
• Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann
• Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press
• Lecture notes
Prerequisites / NoticeStudents should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations.
151-0125-00LHydrodynamics and CavitationW4 credits3GO. Supponen
AbstractThis course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation.
Learning objectiveThe main learning objectives of this course are:
1. Identify and describe dominant effects in liquid fluid flows through physical modelling.
2. Identify hydrodynamic instabilities and discuss the stability region
3. Describe fragmentation of liquids
4. Explain tension, nucleation and phase-change in liquids.
5. Describe hydrodynamic cavitation and its consequences in physical terms.
6. Recognise experimental techniques and industrial and medical applications for cavitation.
ContentThe course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation. Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques.
Lecture notesClass notes and handouts
LiteratureLiterature will be provided in the course material.
Prerequisites / NoticeFluid dynamics I & II or equivalent
151-0209-00LRenewable Energy Technologies Information W4 credits3GA. Steinfeld, E. Casati
AbstractRenewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.
Learning objectiveStudents learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.
Lecture notesLecture Notes containing copies of the presented slides.
Prerequisites / NoticePrerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.
151-0213-00LFluid Dynamics with the Lattice Boltzmann MethodW4 credits3GI. Karlin
AbstractThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
Learning objectiveMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
ContentThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
Lecture notesLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Prerequisites / NoticeThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0293-00LCombustion and Reactive Processes in Energy and Materials TechnologyW4 credits2V + 1U + 2AN. Noiray, F.  Ernst, C. E. Frouzakis
AbstractThis course will provide an introduction to the fundamentals and the applications of combustion in energy conversion and nanoparticles synthesis. The content is highly relevant for technologies which cannot be electrified such as long distance aviation and shipping, and which will more and more rely on carbon-neutral synthetic fuels.
Learning objectiveThe main learning objectives of this course are: 1. Understand the thermodynamic, fluid-dynamic and chemical kinetics fundamentals of combustion processes. 2. Predict relevant parameters for combustion systems, such as laminar and turbulent flame speeds, adiabatic flame temperature or quenching distance. 3. Understand the causal relations of relevant combustion parameters such as the pressure influence on the laminar flame speed. 4. Analyze the challenges of developing sustainable combustion technologies based on carbon-neutral synthetic fuels.
ContentReaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, development of sustainable combustion technologies for power generation, shipping and aviation. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics.
Lecture notesNo script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

Teaching language, assignments and lecture slides in English
LiteratureJ. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

I. Glassman, Combustion, 3rd edition, Academic Press, 1996.
151-0509-00LAcoustics in Fluid Media: From Robotics to Additive Manufacturing
Note: The previous course title until HS21 "Microscale Acoustofluidics"
W4 credits3GD. Ahmed
AbstractThe course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics.
Learning objectiveThe course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing.
ContentLinear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices
Lecture notesYes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
LiteratureMicroscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015
Prerequisites / NoticeSolid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesCritical Thinkingassessed
Integrity and Work Ethicsassessed
Self-direction and Self-management assessed
151-0902-00LMicro- and Nanoparticle Technology Restricted registration - show details
Number of participants is limited to 20.
Additional ones could be enrolled by permission of the lecturer.
W6 credits2V + 2US. E. Pratsinis, V. Mavrantzas, K. Wegner
AbstractParticles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization.
Learning objectiveThis course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there!
ContentThe course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following:
- Overview & Project Presentation
- Particle Size Distribution
- Particle Diffusion
- Coagulation
- Agglomeration & Coalescence
- Particle Growth by Condensation
- Control of particle size & structure during gas-phase synthesis
- Multi-scale design of aerosol synthesis of particles
- Particle Characterization
- Aerosol manufacture of nanoparticles
- Forces acting on Single Particles in a Flow Field
- Fixed and Fluidized Beds
- Separations of Solid-Liquid & Solid-Gas systems
- Emulsions/droplet formation/microfluidics
- Gas Sensors
- Coaching for proposal & report writing as well as oral presentations
LiteratureSmoke, Dust and Haze, S.K. Friedlander, Oxford, 2nd ed., 2000
Aerosol Technology, W. Hinds, Wiley, 2nd Edition, 1999.
Aerosol Processing of Materials, T. Kodas M. Hampden-Smith, Wiley, 1999.
History of the Manufacture of Fine Particles in High-Temperature Aerosol Reactors in Aerosol Science and Technology: History and Reviews, ed. D.S. Ensor & K.N. Lohr, RTI Press, Ch. 18, pp. 475-507, 2011.
Flame aerosol synthesis of smart nanostructured materials, R. Strobel, S. E. Pratsinis, J. Mater. Chem., 17, 4743-4756 (2007).
Prerequisites / NoticeFluidMechanik I, Thermodynamik I&II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII).
151-0905-00LMedical Technology Innovation - From Concept to Clinics Restricted registration - show details W4 credits3GI. Herrmann
AbstractProject-oriented learning on how to develop technological solutions to address unmet clinical needs.
Learning objectiveAfter completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution -interdisciplinary team work and effective communication play a key role.
Lecture noteswill be available on the moodle.
Literaturewill be available on the moodle.
Prerequisites / NoticeOn site presence during (most) of the lectures highly encouraged!
Graded innovation project will require on-site presence.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
151-0913-00LIntroduction to PhotonicsW4 credits2V + 2UR. Quidant, J. Ortega Arroyo
AbstractThis course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light.
Learning objectivePhotonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds.
ContentI- BASICS OF WAVE THEORY
1) General concepts
2) Differential wave equation
3) Wavefront
4) Plane waves and Fourier decomposition of optical fields
5) Spherical waves and Huygens-Fresnel principle

II- ELECTROMAGNETIC WAVES
1) Maxwell equations
2) Wave equation for EM waves
3) Dielectric permittivity
4) Refractive index
5) Nonlinear optics
6) Polarisation and polarisation control

III- PROPAGATION OF LIGHT
1) Waves at an interface
2) The Fresnel equations
3) Total internal reflection
4) Evanescent waves
5) Dispersion diagram

IV- INTERFERENCES
1) General considerations
2) Temporal and spatial coherence
3) The Young double slit experiment
4) Diffraction gratings
5) The Michelson interferometer
6) Multi-wave interference
7) Antireflecting coating and interference filters
8) Optical holography

V- LIGHT MANIPULATION
1) Optical waveguides
2) Photonic crystals
3) Metamaterials and metasurfaces
4) Optical cavities

VI- INTRODUCTION TO OPTICAL MICROSCOPY
1) Basic concepts
2) Direct and Fourier imaging
3) Image formation
4) Fluorescence microscopy
5) Scattering-based microscopy
6) Digital holography
7) Computational imaging

VII- OPTICAL FORCES AND OPTICAL TWEEZERS
1) History of optical forces
2) Theory of optical trapping
3) Atom cooling
4) Optomechanics
5) Plasmonic trapping
6) Applications of optical tweezers
Lecture notesClass notes and handouts
LiteratureOptics (Hecht) - Pearson
Prerequisites / NoticePhysics I, Physics II
151-0917-00LMass TransferW4 credits2V + 2US. E. Pratsinis, V. Mavrantzas, C.‑J. Shih
AbstractThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
Learning objectiveThis course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated.
ContentFick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications.
LiteratureCussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009.
Prerequisites / NoticeStudents attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises.
151-0927-00LRate-Controlled Separations in Fine ChemistryW6 credits3V + 1UM. Mazzotti, V. Becattini
AbstractThe students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications.
Learning objectiveThe students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology.
ContentThe class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation.
Lecture notesHandouts during the class
LiteratureRecommendations for text books will be covered in the class
Prerequisites / NoticeRequirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
151-0951-00LProcess Design and SafetyW4 credits2V + 1UF. Trachsel, C. Hutter
AbstractThe lecture Process Design and Saftey deals with the fundamentals of project management, scale-up, dimensioning and safety of chemical process equipment and plants.
Learning objectiveThe objective of the lecture is to expound the engineering design approach of important elements in chemical plant design.
ContentFundamentals in Chemical engineering Design;
Project Management,
Cost estimate,
Materials and Corrosion,
Piping and Armatures,
Pumps,
Reactors and Scale-up,
Safety of chemical processes,
Patents
Lecture notesThe lecture slides will be distributed.
LiteratureCoulson and Richardson's: Chemical Engineering , Vol 6: Chemical Engineering Design, (1996)
Prerequisites / NoticeA 1-day excursion including a visit of a chemical plant will be part of the lecture.
151-0957-00LPractica in Process Engineering I Restricted registration - show details W2 credits2PS. A. Meyer, M. Tibbitt
AbstractPractical training at pilot facilities for fundamental processing steps, typical laboratory and pilot facility experiments.
Learning objectiveGetting acquainted with unit operations, measuring tools and data processing
Content4 modules in total (3 from Prof. Norris, 1 from Prof. Mark Tibbitt)
Details and dates will be communicated at the beginning of the semester.


Residence Time Distribution
Tibbitt

Perovskite Nanocrystals - Synthesis and Characterization
Norris

ICP Elemental Analysis
Norris

Scanning Electron Microscope Imaging (SEM)
Norris
Lecture notesScripts of the specific practice will be available shortly before the modules.
LiteratureOwn scripts
529-0613-01LProcess Simulation and FlowsheetingW6 credits3GG. Guillén Gosálbez
AbstractThis course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems.
Learning objectiveThis course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results.
- Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers.
ContentOverview of process simulation and flowsheeting:
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation:
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting:
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis:
- Classification of optimization problems
- Linear programming, LP
- Non-linear programming, NLP
- Mixed-integer linear programming, MILP
- Mixed-integer nonlinear programming, MINLP

Commercial software for simulation (Aspen Plus):
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging
LiteratureAn exemplary literature list is provided below:
- Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design,
Prentice Hall International PTR (1997).
- Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988).
- Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering
Series (2001).
- Haydary, J. Chemical Process Design and Simulation, Wiley (2019).
- Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis,
analysis, and evaluation, John Wiley & Sons, Inc. (2010).
- Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009).
- Smith, R. Chemical process design and integration, Wiley (2005).
- Turton, R., A. Shaeiwitz, Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical
Processes, Prentice Hall (2013).
Prerequisites / NoticeA basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.
  •  Page  1  of  1