Search result: Catalogue data in Spring Semester 2022

Mathematics Teaching Diploma Information
Detailed information on the programme at: www.ethz.ch/didaktische-ausbildung
Spec. Courses in Resp. Subj. w/ Educ. Focus & Further Subj. Didactics
NumberTitleTypeECTSHoursLecturers
401-3058-00LCombinatorics I
Does not take place this semester.
W4 credits2GN. Hungerbühler
AbstractThe course Combinatorics I and II is an introduction into the field of enumerative combinatorics.
Learning objectiveUpon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.
ContentContents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.
Prerequisites / NoticeRecognition of credits as an elective course in the Mathematics Bachelor's or Master's Programmes is only possible if you have not received credits for the course unit 401-3052-00L Combinatorics (which was for the last time taught in the spring semester 2008).
401-3056-00LFinite Geometries I Information W4 credits2GN. Hungerbühler
AbstractFinite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares.
Learning objectiveFinite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design.
ContentFinite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Moebius planes, error correcting codes, block design
Literature- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
401-3574-61LIntroduction to Knot Theory Information
Does not take place this semester.
W6 credits3G
AbstractIntroduction to the mathematical theory of knots. We will discuss some elementary topics in knot theory and we will repeatedly centre on how this knowledge can be used in secondary school.
Learning objectiveThe aim of this lecture course is to give an introduction to knot theory. In the course we will discuss the definition of a knot and what is meant by equivalence. The focus of the course will be on knot invariants. We will consider various knot invariants amongst which we will also find the so called knot polynomials. In doing so we will again and again show how this knowledge can be transferred down to secondary school.
ContentDefinition of a knot and of equivalent knots.
Definition of a knot invariant and some elementary examples.
Various operations on knots.
Knot polynomials (Jones, ev. Alexander.....)
LiteratureAn extensive bibliography will be handed out in the course.
Prerequisites / NoticePrerequisites are some elementary knowledge of algebra and topology.
401-9985-00LMentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics A Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for TC and Teaching Diploma.
O2 credits4AM. Akveld, A. Barth, L. Halbeisen, N. Hungerbühler, T. Mettler, A. F. Müller, C. Rüede
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
Learning objectiveThe aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.
ContentThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
Lecture notesEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteratureDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Prerequisites / NoticeDie Arbeit sollte vor Beginn des Praktikums abgeschlossen werden.
401-9986-00LMentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics B Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for Teaching Diploma and for students upgrading TC to Teaching Diploma.
O2 credits4AM. Akveld, A. Barth, L. Halbeisen, N. Hungerbühler, T. Mettler, A. F. Müller, C. Rüede
AbstractIn der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen.
Learning objectiveThe aim is for the students
- to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way.
- to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership.
- To try out different options for specialist further training in their profession.
ContentThematische Schwerpunkte:
Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um.

Lernformen:
Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte
Arbeit ist Teil des Portfolios der Studierenden.
Lecture notesEine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt.
LiteratureDie Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt.
Prerequisites / NoticeDie Arbeit sollte vor Beginn des Praktikums abgeschlossen
werden.
  •  Page  1  of  1