Search result: Catalogue data in Spring Semester 2022
Mathematics TC Detailed information on the programme at: www.ethz.ch/didaktische-ausbildung | ||||||
Specialized Courses in Respective Subject with Educational Focus | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-3058-00L | Combinatorics I Does not take place this semester. | W | 4 credits | 2G | N. Hungerbühler | |
Abstract | The course Combinatorics I and II is an introduction into the field of enumerative combinatorics. | |||||
Learning objective | Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them. | |||||
Content | Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers. | |||||
Prerequisites / Notice | Recognition of credits as an elective course in the Mathematics Bachelor's or Master's Programmes is only possible if you have not received credits for the course unit 401-3052-00L Combinatorics (which was for the last time taught in the spring semester 2008). | |||||
401-3056-00L | Finite Geometries I | W | 4 credits | 2G | N. Hungerbühler | |
Abstract | Finite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares. | |||||
Learning objective | Finite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design. | |||||
Content | Finite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Moebius planes, error correcting codes, block design | |||||
Literature | - Max Jeger, Endliche Geometrien, ETH Skript 1988 - Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983 - Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press - Dembowski: Finite Geometries. | |||||
401-3574-61L | Introduction to Knot Theory Does not take place this semester. | W | 6 credits | 3G | ||
Abstract | Introduction to the mathematical theory of knots. We will discuss some elementary topics in knot theory and we will repeatedly centre on how this knowledge can be used in secondary school. | |||||
Learning objective | The aim of this lecture course is to give an introduction to knot theory. In the course we will discuss the definition of a knot and what is meant by equivalence. The focus of the course will be on knot invariants. We will consider various knot invariants amongst which we will also find the so called knot polynomials. In doing so we will again and again show how this knowledge can be transferred down to secondary school. | |||||
Content | Definition of a knot and of equivalent knots. Definition of a knot invariant and some elementary examples. Various operations on knots. Knot polynomials (Jones, ev. Alexander.....) | |||||
Literature | An extensive bibliography will be handed out in the course. | |||||
Prerequisites / Notice | Prerequisites are some elementary knowledge of algebra and topology. | |||||
401-9985-00L | Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics A Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for TC and Teaching Diploma. | O | 2 credits | 4A | M. Akveld, A. Barth, L. Halbeisen, N. Hungerbühler, T. Mettler, A. F. Müller, C. Rüede | |
Abstract | In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level. | |||||
Learning objective | The aim is for the students - to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way. - to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership. - To try out different options for specialist further training in their profession. | |||||
Content | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | |||||
Lecture notes | Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt. | |||||
Literature | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | |||||
Prerequisites / Notice | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. |
- Page 1 of 1