# Search result: Catalogue data in Spring Semester 2022

Electrical Engineering and Information Technology Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

2nd Semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Examinations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Examination Block A Courses are offered in Autumn Semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Examination Block B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

401-0232-10L | Analysis 2 | O | 8 credits | 4V + 2U | T. Rivière | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to differential calculus and integration in several variables. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Einführung in die Grundlagen der Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Differentiation in several variables, maxima and minima, the implicit function theorem, integration in several variables, integration over submanifolds, the theorems of Gauss and Stokes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Christian Blatter: Ingenieur-Analysis (Kapitel 4-6). Konrad Koenigsberger, Analysis II. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

252-0848-00L | Computer Science I | O | 4 credits | 2V + 2U | M. Schwerhoff, R. Sasse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Primary educational objective is to learn programming with C++. When successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking of a computer scientist. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course covers fundamental data types, expressions and statements, (Limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphy, simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A script written in English will be provided during the semester. The script and slides will be made available for download on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010 Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012 Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

401-0302-10L | Complex Analysis | O | 4 credits | 3V + 1U | A. Iozzi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Basics of complex analysis in theory and applications, in particular the global properties of analytic functions. Introduction to the integral transforms and description of some applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Erwerb von einigen grundlegenden Werkzeuge der komplexen Analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Examples of analytic functions, Cauchy‘s theorem, Taylor and Laurent series, singularities of analytic functions, residues. Fourier series and Fourier integral, Laplace transform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | J. Brown, R. Churchill: "Complex Analysis and Applications", McGraw-Hill 1995 T. Needham. Visual complex analysis. Clarendon Press, Oxford. 2004. M. Ablowitz, A. Fokas: "Complex variables: introduction and applications", Cambridge Text in Applied Mathematics, Cambridge University Press 1997 E. Kreyszig: "Advanced Engineering Analysis", Wiley 1999 J. Marsden, M. Hoffman: "Basic complex analysis", W. H. Freeman 1999 P. P. G. Dyke: "An Introduction to Laplace Transforms and Fourier Series", Springer 2004 A. Oppenheim, A. Willsky: "Signals & Systems", Prentice Hall 1997 M. Spiegel: "Laplace Transforms", Schaum's Outlines, Mc Graw Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisites: Analysis I and II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0002-00L | Networks and Circuits II | O | 8 credits | 4V + 2U | J. Biela | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to AC circuits analysis, Fourier analysis, frequency and time domain, step response of electric circuits, Fourier and Laplace transform, frequency response of electric networks, two-port systems, differential amplifier, operational amplifier, basic and advanced operational amplifier circuits | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The lecture is aiming to make students familiar with basis methods of AC circuits analysis, the Fourier analysis of non-sinusoidal periodic signals, i.e. the relations of frequency and time domain, the calculation of the step response and transfer function of linear networks using Fourier- and Laplace transform and the analysis and design operational amplifier circuits. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Introduction to AC circuits analysis, Fourier analysis, frequency and time domain, step response of electric circuits, Fourier and Laplace transform, frequency response of electric networks, two-port systems, differential amplifier, operational amplifier, basic and advanced operational amplifier circuits | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes are available in Moodle. In addition, the listed literature could be used. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Elektrotechnik; Manfred Albach; 2. Auflage; 688 Seiten; Pearson Studium 2020; ISBN: 9783868943986 Grundlagen der Elektrotechnik – Netzwerke; 2. Auflage; 384 Sei- ten; Schmidt / Schaller / Martius; Pearson Studium 2014; ISBN: 978-3-8689-4239-2 Microelectronic Circuits; 7. Auflage; 1472 Seiten; Sedra / Smith; Oxford University Press 2015; ISBN: 9780199339143 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0052-00L | Physics I | O | 4 credits | 2V + 2U | K. Ensslin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Physics I is an introduction to continuum mechanics, wave phenomena, and fundamental concepts of thermodynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | After completing this course, students should be able to construct and apply simple models of dynamics in non-rigid materials. Students should also be able to identify and relate basic thermodynamic quantities in equilibrium systems given realistic constraints. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The lecture will discuss the following concepts: Waves - One dimensional wave equation - Plane waves, spherical waves in 2 and 3 dimensions - Elastic waves, sound velocity - Stationary waves, resonances - Propagation: interference and diffraction - Doppler effect Thermodynamics - Kinetic theory of gases, perfect gases - Conservation of energy, first principle - Second principle, thermal cycles - Entropy, thermodynamical and statistical interpretation - Thermal radiation and heat transfer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | The lecture notes will be distributed via the Moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | P. A. Tipler and G. Mosca, "Physics for Scientists and Engineers" (6th edition) Chapters 14-20. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Technical Mechanics, Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

First Year Compulsory Laboratory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0004-10L | Networks and Circuits Laboratory Only for Electrical Engineering and Information Technology BSc. | O | 1 credit | 1P | J. W. Kolar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Concepts from the lectures "Networks and Circuits I and II" explored through experiments, with inductive energy transmission systems (equivalent circuit parameters, transmission characteristics, resonance compensation, high-voltage generation) and photovoltaics (solar module characteristics, power flow adjustment with DC-DC converters, electro-mechanical energy conversion) used as examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The core topics of the course "Networks and Circuits I and II" are reviewed in practice, through experiments, in a modern laboratory environment. Furthermore, through the illustrative experiments in the fields of inductive power transfer and photovoltaics, a methodical experimental approach, the use of modern measurement equipment, and proper documentation skills are all learned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The "Networks and Circuits Laboratory" covers core topics presented in the lectures and exercises of the courses "Networks and Circuits I and II" through experiments. These topics are demonstrated in practice within the context of selected real-world industrial applications: - Inductive power transfer (topics: parameters of equivalent circuits, transmission characteristics, resonance compensation, and high-voltage generation); and - Photovoltaics (topics: characteristics and power performance of a solar module, power flow and/or operating point adjustment with power electronic converters, electro-mechanical energy conversion). In each experiment, after measuring and observing components and subsystems of the above, the structuring and overall function of the system is discussed, in order to promote higher-level abstract reasoning and synthesis skills in addition to analysis skills. Further important goals of this Laboratory Course are familiarisation with modern measuring equipment, and highlighting the importance of planning, executing, and documenting experiments and measurements in a thorough and methodical fashion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Instruction manual | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Lecture documents Networks and Circuits I and II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

4th Semester: Examination Blocks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Examination Block 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0013-00L | Computer Engineering | O | 4 credits | 2V + 1U + 1P | K. Razavi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course provides knowledge on the inner working of computer systems by introducing basic concepts in the design of microprocessors and operating systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | By the end of the course, the students should be able to analyze and think critically about the design and implementation of computer systems at the hardware and software boundary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | On the hardware side, the course will show how microprocessors implement control and data paths before introducing microarchitectural optimizations such as pipelining, speculation and caching. On the software side, the course will show how to program a microprocessor before introducing fundamental concepts in the design of operating systems such as on physical and virtual memory management, process management and scheduling. The lectures are complemented by theoretical exercises and six practical assignments that cover the core concepts of the course and allow students to gain a deeper understanding of the topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | 1) D.A. Patterson, J.L. Hennessy: Computer Organization and Design RISC-V Edition: The Hardware Software Interface (2nd Edition), ISBN-13: 978-0128203316 2) R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau: Operating Systems: Three Easy Pieces, https://pages.cs.wisc.edu/~remzi/OSTEP | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Programming skills in systems languages such as C or C++, knowledge of digital design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0046-10L | Signals and Systems II | O | 4 credits | 2V + 2U | J. Lygeros | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Continuous and discrete time linear system theory, state space methods, frequency domain methods, controllability, observability, stability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Introduction to basic concepts of system theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Modeling and classification of dynamical systems. Modeling of linear, time invariant systems by state equations. Solution of state equations by time domain and Laplace methods. Stability, controllability and observability analysis. Frequency domain description, Bode and Nyquist plots. Sampled data and discrete time systems. Advanced topics: Nonlinear systems, chaos, discrete event systems, hybrid systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Copy of transparencies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Recommended: K.J. Astrom and R. Murray, "Feedback Systems: An Introduction for Scientists and Engineers", Princeton University Press 2009 http://www.cds.caltech.edu/~murray/amwiki/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Examination Block 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

401-0654-00L | Numerical Methods | O | 4 credits | 2V + 1U | R. Käppeli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course introduces numerical methods according to the type of problem they tackle. The tutorials will include both theoretical exercises and practical tasks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | This course intends to introduce students to fundamental numerical methods that form the foundation of numerical simulation in engineering. Students are to understand the principles of numerical methods, and will be taught how to assess, implement, and apply them. The focus of this class is on the numerical solution of ordinary differential equations. During the course they will become familiar with basic techniques and concepts of numerical analysis. They should be enabled to select and adapt suitable numerical methods for a particular problem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Quadrature, Newton method, initial value problems for ordinary differential equations: explicit one step methods, step length control, stability analysis and implicit methods, structure preserving methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | M. Hanke Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, BG Teubner, Stuttgart, 2002. W. Dahmen, A. Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer, 2008. Extensive study of the literature is not necessary for the understanding of the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite is familiarity with basic calculus and linear algebra. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0052-10L | Electromagnetic Fields and Waves | O | 4 credits | 2V + 2U | L. Novotny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course is focused on the generation and propagation of electromagnetic fields. Based on Maxwell's equations we will derive the wave equation and its solutions. Specifically, we will discuss fields and waves in free space, refraction and reflection at plane interfaces, dipole radiation and angular spectrum representation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Understanding of electromagnetic fields | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0056-00L | Semiconductor Devices | O | 4 credits | 2V + 2U | C. Bolognesi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course covers the basic principles of semiconductor devices in micro-, opto-, and power electronics. It imparts knowledge both of the basic physics and on the operation principles of pn-junctions, diodes, contacts, bipolar transistors, MOS devices, solar cells, photodetectors, LEDs and laser diodes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Understanding of the basic principles of semiconductor devices in micro-, opto-, and power electronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Brief survey of the history of microelectronics. Basic physics: Crystal structure of solids, properties of silicon and other semiconductors, principles of quantum mechanics, band model, conductivity, dispersion relation, equilibrium statistics, transport equations, generation-recombination (G-R), Quasi-Fermi levels. Physical and electrical properties of the pn-junction. pn-diode: Characteristics, small-signal behaviour, G-R currents, ideality factor, junction breakdown. Contacts: Schottky contact, rectifying barrier, Ohmic contact, Heterojunctions. Bipolar transistor: Operation principles, modes of operation, characteristics, models, simulation. MOS devices: Band diagram, MOSFET operation, CV- and IV characteristics, frequency limitations and non-ideal behaviour. Optoelectronic devices: Optical absorption, solar cells, photodetector, LED, laser diode. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | The lecture course follows the book Neamen, Semiconductor Physics and Devices, ISBN 978-007-108902-9, Fr. 89.00 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Qualifications: Physics I+II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

401-0604-00L | Probability Theory and Statistics | O | 4 credits | 2V + 1U | B. Acciaio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Probability models and applications, introduction to statistical estimation and statistical tests. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Ability to understand the covered methods and models from probability theory and to apply them in other contexts. Ability to perform basic statistical tests and to interpret the results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The concept of probability space and some classical models: the axioms of Kolmogorov, easy consequences, discrete models, densities, product spaces, relations between various models, distribution functions, transformations of probability distributions. Conditional probabilities, definition and examples, calculation of absolute probabilities from conditional probabilities, Bayes' formula, conditional distribution. Expectation of a random variable,application to coding, variance, covariance and correlation, linear estimator, law of large numbers, central limit theorem. Introduction to statistics: estimation of parameters and tests | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Textbuch: P. Brémaud: 'An Introduction to Probabilistic Modeling', Springer, 1988. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

6th Semester: Third Year Core Courses Can be freely combined, a list of recommendations is available under www.ee.ethz.ch/bachelor-kernfaecher | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0104-00L | Communication and Detection Theory | W | 6 credits | 4G | A. Lapidoth | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course teaches the foundations of modern digital communications and detection theory. Topics include the geometry of the space of energy-limited signals; the baseband representation of passband signals, spectral efficiency and the Nyquist Criterion; the power and power spectral density of PAM and QAM; hypothesis testing; Gaussian stochastic processes; and detection in white Gaussian noise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | This is an introductory class to the field of wired and wireless communication. It offers a glimpse at classical analog modulation (AM, FM), but mainly focuses on aspects of modern digital communication, including modulation schemes, spectral efficiency, power budget analysis, block and convolu- tional codes, receiver design, and multi- accessing schemes such as TDMA, FDMA and Spread Spectrum. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | - Baseband representation of passband signals. - Bandwidth and inner products in baseband and passband. - The geometry of the space of energy-limited signals. - The Sampling Theorem as an orthonormal expansion. - Sampling passband signals. - Pulse Amplitude Modulation (PAM): energy, power, and power spectral density. - Nyquist Pulses. - Quadrature Amplitude Modulation (QAM). - Hypothesis testing. - The Bhattacharyya Bound. - The multivariate Gaussian distribution - Gaussian stochastic processes. - Detection in white Gaussian noise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | n/a | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | A. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2nd edition (2017) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0111-00L | Communication Electronics | W | 6 credits | 2V + 2U | T. Burger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Electronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Foundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Accounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications. This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications. We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier. We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance. When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail. Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter. A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base. An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Script is available online under https://iis-students.ee.ethz.ch/lectures/communication-electronics/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The course Analog Integrated Circuits is recommended as preparation for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0112-00L | High-Speed Signal Propagation | W | 6 credits | 2V + 2U | C. Bolognesi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Understanding of high-speed signal propagation in microwave cables and integrated circuits and printed circuit boards. As clock frequencies rise in the GHz domain, there is a need grasp signal propagation to maintain good signal integrity in the face of symbol interference and cross-talk. The course is of high value to all interested in high-speed analog (RF, microwave) or digital systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Understanding of high-speed signal propagation in interconnects, microwave cables and integrated transmission lines such as microwave integrated circuits and/or printed circuit boards. As system clock frequencies continuously rise in the GHz domain, a need urgently develops to understand high-speed signal propagation in order to maintain good signal integrity in the face of phenomena such as inter-symbol interference (ISI) and cross-talk. Concepts such as Scattering parameters (or S-parameters) are key to the characterization of networks over wide bandwidths. At high frequencies, all structures effectively become "transmission lines." Unless care is taken, it is highly probable that one ends-up with a bad transmission line that causes the designed system to malfunction. Filters will also be considered because it turns out that some of the problems associated by lossy transmission channels (lines, cables, etc) can be corrected by adequate filtering in a process called "equalization." | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Transmission line equations of the lossless and lossy TEM-transmission line. Introduction of current and voltage waves. Representation of reflections in the time and frequency domain. Application of the Smith chart. Behavior of low-loss transmission lines. Attenuation and impulse distortion due to skin effect. Transmission line equivalent circuits. Group delay and signal dispersion. Coupled transmission lines. Scattering parameters. Butterworth-, Chebychev- and Bessel filter approximations: filter synthesis from low-pass filter prototypes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Script: Leitungen und Filter (In German). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Exercises will be held in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0117-10L | Experimental Techniques Number of participants limited to 60. | W | 6 credits | 4G | C. Franck, P. Simka | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This lecture is an introduction to experimental and measurement techniques. The course is designed with practical relevance in mind and comprises several laboratory modules where the students perform, evaluate and document experiments. The taught topics are of relevance for all electrical engineering disciplines, in this course they are taught with examples of high-voltage engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | At the end of this lecture, the students will be able to: - perform basic practical laboratory experiments and record data, in particular with an oscilloscope. - take a meaningful Lab Notebook, write a clear measurement evaluation protocol, and can estimate the accuracy and precision of the evaluated data. - can explain the main reasons for electromagnetic interference and propose measures to avoid or reduce these interferences. - Explain and use different methods to generate and measure high voltages and calculate basic relevant relations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | - Messtechnik, Messunsicherheit, Messprotokolle - Erzeugung und Messung hoher Spannungen - Elektromagnetische Verträglichkeit - Laborpraktika | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Vorlesungsunterlagen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | J. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719) A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994) A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0120-00L | Communication Networks | W | 6 credits | 4G | L. Vanbever | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | At the end of this course, you will understand the fundamental concepts behind communication networks and the Internet. Specifically, you will be able to: - understand how the Internet works; - build and operate Internet-like infrastructures; - identify the right set of metrics to evaluate the performance of a network and propose ways to improve it. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | At the end of the course, the students will understand the fundamental concepts of communication networks and Internet-based communications. Specifically, students will be able to: - understand how the Internet works; - build and operate Internet-like network infrastructures; - identify the right set of metrics to evaluate the performance or the adequacy of a network and propose ways to improve it (if any). The course will introduce the relevant mechanisms used in today's networks both from an abstract perspective but also from a practical one by presenting many real-world examples and through multiple hands-on projects. For more information about the lecture, please visit: https://comm-net.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes and material for the course will be available before each course on: https://comm-net.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Most of course follows the textbook "Computer Networking: A Top-Down Approach (6th Edition)" by Kurose and Ross. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | No prior networking background is needed. The course will include some programming assignments (in Python) for which the material covered in Technische Informatik 1 (227-0013-00L) will be useful. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0125-00L | Optics and Photonics | W | 6 credits | 2V + 2U | J. Leuthold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This lecture covers both - the fundamentals of "Optics" such as e.g. "ray optics", "coherence", the "Planck law", the "reciprocity theorem" or the "Einstein relations" but also the fundamentals of "Photonics" on the generation (the laser), processing, transmission and detection of photons. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | A sound base for work in the field of optics and photonics will be conveyed. Key principles of optics will the thaught. The lecture passes on the essentials for work with free-space optics or waveguide optics. In addition important optical devices will be discussed. Among them are e.g. optical filters, copulers (MMI-couplers,...), Holograms,... . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Chapter 1: Ray Optics Chapter 2: Electromagnetic Optics Chapter 3: Polarization Chapter 4: Coherence and Interference Chapter 5: Fourier Optics and Diffraction Chapter 6: Guided Wave Optics Chapter 7: Optical Fibers Chapter 8: The Laser | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes will be handed out. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Fundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0156-00L | Power Semiconductors | W | 6 credits | 4G | U. Grossner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Power semiconductor devices are the core of today's energy efficient electronics. In this course, an understanding of the functionality of modern power devices is developed. Typical device concepts for power rectifiers and transistors are discussed. In addition to silicon-based devices, wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are considered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The goal of this course is to develop an understanding of modern power device concepts. After following the course, the student will be able to choose a power device for an application, know the basic functionality, and is able to describe the performance and reliability related building blocks of the device design. Furthermore, the student will have an understanding of current and future developments in power devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | • Basic semiconductor physics concepts • Device design/conceptual thinking • Device simulation (TCAD) • Device processing • Diodes • BJT and JFET • Thyristor • MOSFET and power MOSFET • IGBT and HEMT • Packaging and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Script will be made available via Moodle, printouts of the slides will be distributed during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | The course follows a collection of different books; more details are being listed in the script. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Vorlesungen Halbleiterbauelemente, Leistungselektronik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

227-0160-00L | Fundamentals of Physical Modeling and Simulations | W | 6 credits | 2V + 2U + 1P | J. Smajic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Mathematical description of different physical phenomena and numerical methods for solving the obtained equations are discussed. The course presents the fundamentals of mathematical modeling including ordinary and partial differential equations along with boundary and initial conditions. Finite Difference Method and Finite Element Method for solving boundary value problems are shown in detail. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | After completing this course a student will understand the main idea of representing physical phenomena with mathematical equations, will be able to apply an appropriate numerical method for solving the obtained equations, and will possess the knowledge to qualitatively evaluate the obtained results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | a. Introduction to physical modeling and simulations b. Numerical methods for solving boundary (initial) value problems b.i. Finite difference method (FDM) b.ii. Finite element method (FEM) c. Boundary (initial) value problems of different physical phenomena c.i. Static and dynamic electric current distribution in solid conductors c.ii. Static und dynamic electric charge transport in semiconductors c.iii. Induced eddy currents in low frequency range (with numerous examples from the area of electrical energy technology) c.iv. Wave propagation in the RF-, microwave-, and optical frequency range (with numerous examples relevant for communication technology) c.v. Static and dynamic temperature distribution in solid bodies (with numerous examples relevant for electrical energy technology) c.vi. Static and dynamic mechanical structural analysis (with numerous examples from the area of MEMS technology) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes, Matlab programs, exercises and their solutions will be handed out. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | J. Smajic, “How To Perform Electromagnetic Finite Element Analysis”, The International Association for the Engineering Modelling, Analysis & Simulation Community (NAFEMS), NAFEMS Ltd., Hamilton, UK, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Fundamentals of Electromagnetic Fields, and Bachelor Lectures on Physics. |

- Page 1 of 5 All