Suchergebnis: Katalogdaten im Frühjahrssemester 2022

Elektrotechnik und Informationstechnologie Master Information
Master-Studium (Studienreglement 2008)
Fächer der Vertiefung
Insgesamt 42 KP müssen im Masterstudium aus Vertiefungsfächern erreicht werden. Der individuelle Studienplan unterliegt der Zustimmung eines Tutors.
Signal Processing and Machine Learning
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-0391-00LMedical Image Analysis
Basic knowledge of computer vision would be helpful.
W3 KP2GE. Konukoglu, M. A. Reyes Aguirre
KurzbeschreibungIt is the objective of this lecture to introduce the basic concepts used
in Medical Image Analysis. In particular the lecture focuses on shape
representation schemes, segmentation techniques, machine learning based predictive models and various image registration methods commonly used in Medical Image Analysis applications.
LernzielThis lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas.
Voraussetzungen / BesonderesPrerequisites:
Basic concepts of mathematical analysis and linear algebra.

Preferred:
Basic knowledge of computer vision and machine learning would be helpful.

The course will be held in English.
227-0427-10LAdvanced Signal Analysis, Modeling, and Machine Learning Information W6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course develops a selection of topics pivoting around state space models, factor graphs, and pertinent algorithms for estimation, model fitting, and learning.
LernzielThe course develops a selection of topics pivoting around state space methods, factor graphs, and pertinent algorithms:
- hidden-Markov models
- factor graphs and message passing algorithms
- linear state space models, Kalman filtering, and recursive least squares
- Gibbs sampling, particle filter
- recursive local polynomial fitting for signal analysis
- parameter learning by expectation maximization
- linear-model fitting beyond least squares: sparsity, Lp-fitting and regularization, jumps
- binary, M-level, and half-plane constraints in control and communications
SkriptLecture notes
Voraussetzungen / BesonderesSolid mathematical foundations (especially in probability, estimation, and linear algebra) as provided by the course "Introduction to Estimation and Machine Learning".
227-0434-10LMathematics of Information Information W8 KP3V + 2U + 2AH. Bölcskei
KurzbeschreibungThe class focuses on mathematical aspects of

1. Information science: Sampling theorems, frame theory, compressed sensing, sparsity, super-resolution, spectrum-blind sampling, subspace algorithms, dimensionality reduction

2. Learning theory: Approximation theory, greedy algorithms, uniform laws of large numbers, Rademacher complexity, Vapnik-Chervonenkis dimension
LernzielThe aim of the class is to familiarize the students with the most commonly used mathematical theories in data science, high-dimensional data analysis, and learning theory. The class consists of the lecture and exercise sessions with homework problems.
InhaltMathematics of Information

1. Signal representations: Frame theory, wavelets, Gabor expansions, sampling theorems, density theorems

2. Sparsity and compressed sensing: Sparse linear models, uncertainty relations in sparse signal recovery, super-resolution, spectrum-blind sampling, subspace algorithms (ESPRIT), estimation in the high-dimensional noisy case, Lasso

3. Dimensionality reduction: Random projections, the Johnson-Lindenstrauss Lemma

Mathematics of Learning

4. Approximation theory: Nonlinear approximation theory, best M-term approximation, greedy algorithms, fundamental limits on compressibility of signal classes, Kolmogorov-Tikhomirov epsilon-entropy of signal classes, optimal compression of signal classes

5. Uniform laws of large numbers: Rademacher complexity, Vapnik-Chervonenkis dimension, classes with polynomial discrimination
SkriptDetailed lecture notes will be provided at the beginning of the semester.
Voraussetzungen / BesonderesThis course is aimed at students with a background in basic linear algebra, analysis, statistics, and probability.

We encourage students who are interested in mathematical data science to take both this course and "401-4944-20L Mathematics of Data Science" by Prof. A. Bandeira. The two courses are designed to be complementary.

H. Bölcskei and A. Bandeira
227-0449-00LSeminar in Biomedical Image ComputingW1 KP2SE. Konukoglu, B. Menze, M. A. Reyes Aguirre
KurzbeschreibungThis is a seminar lecture focusing on recent research topics in biomedical image computing, machine learning techniques related to interpreting biomedical images and medical data in general. Every week a different topic will be presented and discussed.
LernzielThe goal of this lecture is to provide a glimpse of the current research landscape to graduate students who are interested in working on biomedical image computing and related areas. Different topics will be covered by different speakers every week to provide a broad perspective and highlight current challenges. Every week students will be asked to read a paper, prepare discussion questions and participate in the discussion. Upon completion of this course, students will have a broad overview of the recent developments in biomedical image computing and ability to critically discuss a scientific article.
Voraussetzungen / BesonderesKnowledge in computer vision, machine learning and biomedical image analysis would be essential.
252-0220-00LIntroduction to Machine Learning Information Belegung eingeschränkt - Details anzeigen
Limited number of participants. Preference is given to students in programmes in which the course is being offered. All other students will be waitlisted. Please do not contact Prof. Krause for any questions in this regard. If necessary, please contact studiensekretariat@inf.ethz.ch
W8 KP4V + 2U + 1AA. Krause, F. Yang
KurzbeschreibungThe course introduces the foundations of learning and making predictions based on data.
LernzielThe course will introduce the foundations of learning and making predictions from data. We will study basic concepts such as trading goodness of fit and model complexitiy. We will discuss important machine learning algorithms used in practice, and provide hands-on experience in a course project.
Inhalt- Linear regression (overfitting, cross-validation/bootstrap, model selection, regularization, [stochastic] gradient descent)
- Linear classification: Logistic regression (feature selection, sparsity, multi-class)
- Kernels and the kernel trick (Properties of kernels; applications to linear and logistic regression); k-nearest neighbor
- Neural networks (backpropagation, regularization, convolutional neural networks)
- Unsupervised learning (k-means, PCA, neural network autoencoders)
- The statistical perspective (regularization as prior; loss as likelihood; learning as MAP inference)
- Statistical decision theory (decision making based on statistical models and utility functions)
- Discriminative vs. generative modeling (benefits and challenges in modeling joint vy. conditional distributions)
- Bayes' classifiers (Naive Bayes, Gaussian Bayes; MLE)
- Bayesian approaches to unsupervised learning (Gaussian mixtures, EM)
LiteraturTextbook: Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press
Voraussetzungen / BesonderesDesigned to provide a basis for following courses:
- Advanced Machine Learning
- Deep Learning
- Probabilistic Artificial Intelligence
- Seminar "Advanced Topics in Machine Learning"
  •  Seite  1  von  1