Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Cyber Security Master | ||||||||||||||||||||||||
Ergänzung | ||||||||||||||||||||||||
Theoretical Computer Science | ||||||||||||||||||||||||
Wahlfächer | ||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
252-0408-00L | Cryptographic Protocols | W | 6 KP | 2V + 2U + 1A | M. Hirt | |||||||||||||||||||
Kurzbeschreibung | The course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc. | |||||||||||||||||||||||
Lernziel | Indroduction to a very active research area with many gems and paradoxical results. Spark interest in fundamental problems. | |||||||||||||||||||||||
Inhalt | The course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc. | |||||||||||||||||||||||
Skript | We provide short lecture notes and handouts of the slides. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | A basic understanding of fundamental cryptographic concepts (as taught for example in the course Information Security or in the course Cryptography Foundations) is useful, but not required. | |||||||||||||||||||||||
252-1424-00L | Models of Computation | W | 6 KP | 2V + 2U + 1A | M. Cook | |||||||||||||||||||
Kurzbeschreibung | This course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more. | |||||||||||||||||||||||
Lernziel | The goal of this course is to become acquainted with a wide variety of models of computation, to understand how models help us to understand the modeled systems, and to be able to develop and analyze models appropriate for new systems. | |||||||||||||||||||||||
Inhalt | This course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more. | |||||||||||||||||||||||
263-4656-00L | Digital Signatures | W | 5 KP | 2V + 2A | D. Hofheinz | |||||||||||||||||||
Kurzbeschreibung | Digital signatures as one central cryptographic building block. Different security goals and security definitions for digital signatures, followed by a variety of popular and fundamental signature schemes with their security analyses. | |||||||||||||||||||||||
Lernziel | The student knows a variety of techniques to construct and analyze the security of digital signature schemes. This includes modularity as a central tool of constructing secure schemes, and reductions as a central tool to proving the security of schemes. | |||||||||||||||||||||||
Inhalt | We will start with several definitions of security for signature schemes, and investigate the relations among them. We will proceed to generic (but inefficient) constructions of secure signatures, and then move on to a number of efficient schemes based on concrete computational hardness assumptions. On the way, we will get to know paradigms such as hash-then-sign, one-time signatures, and chameleon hashing as central tools to construct secure signatures. | |||||||||||||||||||||||
Literatur | Jonathan Katz, "Digital Signatures." | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Ideally, students will have taken the D-INFK Bachelors course "Information Security" or an equivalent course at Bachelors level. | |||||||||||||||||||||||
272-0300-00L | Algorithmik für schwere Probleme Findet dieses Semester nicht statt. Diese Lerneinheit beinhaltet die Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik A n i c h t ! | W | 5 KP | 2V + 1U + 1A | ||||||||||||||||||||
Kurzbeschreibung | Diese Lerneinheit beschäftigt sich mit algorithmischen Ansätzen zur Lösung schwerer Probleme, insbesondere mit exakten Algorithmen mit moderat exponentieller Laufzeit und parametrisierten Algorithmen. Eine umfassende Reflexion über die Bedeutung der vorgestellten Ansätze für den Informatikunterricht an Gymnasien begleitet den Kurs. | |||||||||||||||||||||||
Lernziel | Auf systematische Weise eine Übersicht über die Methoden zur Lösung schwerer Probleme kennen lernen. Vertiefte Kenntnisse im Bereich exakter und parameterisierter Algorithmen erwerben. | |||||||||||||||||||||||
Inhalt | Zuerst wird der Begriff der Berechnungsschwere erläutert (für die Informatikstudierenden wiederholt). Dann werden die Methoden zur Lösung schwerer Probleme systematisch dargestellt. Bei jeder Algorithmenentwurfsmethode wird vermittelt, was sie uns garantiert und was sie nicht sichern kann und womit wir für die gewonnene Effizienz bezahlen. Ein Schwerpunkt liegt auf exakten Algorithmen mit moderat exponentieller Laufzeit und auf parametrisierten Algorithmen. | |||||||||||||||||||||||
Skript | Unterlagen und Folien werden zur Verfügung gestellt. | |||||||||||||||||||||||
Literatur | J. Hromkovic: Algorithmics for Hard Problems, Springer 2004. R. Niedermeier: Invitation to Fixed-Parameter Algorithms, 2006. M. Cygan et al.: Parameterized Algorithms, 2015. F. Fomin et al.: Kernelization, 2019. F. Fomin, D. Kratsch: Exact Exponential Algorithms, 2010. | |||||||||||||||||||||||
272-0302-00L | Approximations- und Online-Algorithmen | W | 5 KP | 2V + 1U + 1A | H.‑J. Böckenhauer, D. Komm | |||||||||||||||||||
Kurzbeschreibung | Diese Lerneinheit behandelt approximative Verfahren für schwere Optimierungsprobleme und algorithmische Ansätze zur Lösung von Online-Problemen sowie die Grenzen dieser Ansätze. | |||||||||||||||||||||||
Lernziel | Auf systematische Weise einen Überblick über die verschiedenen Entwurfsmethoden von approximativen Verfahren für schwere Optimierungsprobleme und Online-Probleme zu gewinnen. Methoden kennenlernen, die Grenzen dieser Ansätze aufweisen. | |||||||||||||||||||||||
Inhalt | Approximationsalgorithmen sind einer der erfolgreichsten Ansätze zur Behandlung schwerer Optimierungsprobleme. Dabei untersucht man die sogenannte Approximationsgüte, also das Verhältnis der Kosten einer berechneten Näherungslösung und der Kosten einer (nicht effizient berechenbaren) optimalen Lösung. Bei einem Online-Problem ist nicht die gesamte Eingabe von Anfang an bekannt, sondern sie erscheint stückweise und für jeden Teil der Eingabe muss sofort ein entsprechender Teil der endgültigen Ausgabe produziert werden. Die Güte eines Algorithmus für ein Online-Problem misst man mit der competitive ratio, also dem Verhältnis der Kosten der berechneten Lösung und der Kosten einer optimalen Lösung, wie man sie berechnen könnte, wenn die gesamte Eingabe bekannt wäre. Inhalt dieser Lerneinheit sind - die Klassifizierung von Optimierungsproblemen nach der erreichbaren Approximationsgüte, - systematische Methoden zum Entwurf von Approximationsalgorithmen (z. B. Greedy-Strategien, dynamische Programmierung, LP-Relaxierung), - Methoden zum Nachweis der Nichtapproximierbarkeit, - klassische Online-Probleme wie Paging oder Scheduling-Probleme und Algorithmen zu ihrer Lösung, - randomisierte Online-Algorithmen, - Entwurfs- und Analyseverfahren für Online-Algorithmen, - Grenzen des "competitive ratio"- Modells und Advice-Komplexität als eine Möglichkeit, die Komplexität von Online-Problemen genauer zu messen. | |||||||||||||||||||||||
Literatur | Die Vorlesung orientiert sich teilweise an folgenden Büchern: J. Hromkovic: Algorithmics for Hard Problems, Springer, 2004 D. Komm: An Introduction to Online Computation: Determinism, Randomization, Advice, Springer, 2016 Zusätzliche Literatur: A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge University Press, 1998 | |||||||||||||||||||||||
401-3052-10L | Graph Theory | W | 10 KP | 4V + 1U | B. Sudakov | |||||||||||||||||||
Kurzbeschreibung | Basics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem | |||||||||||||||||||||||
Lernziel | The students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems. | |||||||||||||||||||||||
Skript | Lecture will be only at the blackboard. | |||||||||||||||||||||||
Literatur | West, D.: "Introduction to Graph Theory" Diestel, R.: "Graph Theory" Further literature links will be provided in the lecture. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Students are expected to have a mathematical background and should be able to write rigorous proofs. | |||||||||||||||||||||||
401-3902-21L | Network & Integer Optimization: From Theory to Application | W | 6 KP | 3G | R. Zenklusen | |||||||||||||||||||
Kurzbeschreibung | This course covers various topics in Network and (Mixed-)Integer Optimization. It starts with a rigorous study of algorithmic techniques for some network optimization problems (with a focus on matching problems) and moves to key aspects of how to attack various optimization settings through well-designed (Mixed-)Integer Programming formulations. | |||||||||||||||||||||||
Lernziel | Our goal is for students to both get a good foundational understanding of some key network algorithms and also to learn how to effectively employ (Mixed-)Integer Programming formulations, techniques, and solvers, to tackle a wide range of discrete optimization problems. | |||||||||||||||||||||||
Inhalt | Key topics include: - Matching problems; - Integer Programming techniques and models; - Extended formulations and strong problem formulations; - Solver techniques for (Mixed-)Integer Programs; - Decomposition approaches. | |||||||||||||||||||||||
Literatur | - Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018. - Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes. - Vanderbeck François, Wolsey Laurence: Reformulations and Decomposition of Integer Programs. Chapter 13 in: 50 Years of Integer Programming 1958-2008. Springer, 2010. - Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid background in linear algebra. Preliminary knowledge of Linear Programming is ideal but not a strict requirement. Prior attendance of the course Linear & Combinatorial Optimization is a plus. | |||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||
402-0448-01L | Quantum Information Processing I: Concepts Dieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | P. Kammerlander | |||||||||||||||||||
Kurzbeschreibung | The course covers the key concepts of quantum information processing, including quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer. Key concepts such as quantum error correction are discussed in detail. They provide fundamental insights into the nature of quantum states and measurements. | |||||||||||||||||||||||
Lernziel | By the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols. | |||||||||||||||||||||||
Inhalt | The topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), quantum error correction, fault-tolerant designs, and quantum simulation. | |||||||||||||||||||||||
Skript | Will be provided. | |||||||||||||||||||||||
Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||||||||||||||||||||
Voraussetzungen / Besonderes | A good understanding of finite dimensional linear algebra is recommended. | |||||||||||||||||||||||
Kompetenzen |
|
- Seite 1 von 1