Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Maschineningenieurwissenschaften Bachelor | ||||||||||||||||||||||||||||||||||||
6. Semester | ||||||||||||||||||||||||||||||||||||
Fokus-Vertiefung | ||||||||||||||||||||||||||||||||||||
Energy, Flows and Processes Fokus-Koordinator: Prof. Christoph Müller Für die erforderlichen 20 KP der Fokus-Vertiefung Energy, Flows and Processes müssen mindestens 2 Kernfächer (W+) (HS/FS) und mindestens 2 der Wahlfächer (HS/FS) gemäss der Präsentation der Fokus-Vertiefung Energy, Flows and Processes (siehe Link) gewählt werden. 1 Kurs kann frei aus dem gesamten Angebot aller D-MAVT Studiengänge (Bachelor und Master) gewählt werden. | ||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0206-00L | Energy Systems and Power Engineering | W+ | 4 KP | 2V + 2U | R. S. Abhari, A. Steinfeld | |||||||||||||||||||||||||||||||
Kurzbeschreibung | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||||||||||||||||||||||||||||||||
Lernziel | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||||||||||||||||||||||||||||||||
Inhalt | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles. | |||||||||||||||||||||||||||||||||||
Skript | Vorlesungsunterlagen werden verteilt | |||||||||||||||||||||||||||||||||||
151-0208-00L | Computational Methods for Flow, Heat and Mass Transfer Problems | W+ | 4 KP | 4G | D. W. Meyer-Massetti | |||||||||||||||||||||||||||||||
Kurzbeschreibung | Es werden numerische Methoden zur Lösung von Problemen der Fluiddynamik, Energie- & Verfahrenstechnik dargestellt und anhand von analytischen & numerischen Beispielen illustriert. | |||||||||||||||||||||||||||||||||||
Lernziel | Kenntnisse und praktische Erfahrung mit der Anwendung von Diskretisierungs- und Lösungsverfahren für Problem der Fluiddynamik und der Energie- und Verfahrenstechnik | |||||||||||||||||||||||||||||||||||
Inhalt | - Einleitung mit Anwendungen, Schritte zur numerischen Lösung - Klassifizierung partieller Differentialgleichungen, Beispiele aus Anwendungen - Finite Differenzen - Finite Volumen - Methoden der gewichteten Residuen, Spektralmethoden, finite Elemente - Stabilitätsanalyse, Konsistenz, Konvergenz - Numerische Lösungsverfahren, lineare Löser Der Stoff wird mit Beispielen aus der Praxis illustriert. | |||||||||||||||||||||||||||||||||||
Skript | Folien zur Ergänzung während der Vorlesung werden ausgegeben. | |||||||||||||||||||||||||||||||||||
Literatur | Referenzen werden in der Vorlesung angegeben. Notizen in guter Übereinstimmung mit der Vorlesung stehen zur Verfügung. | |||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Grundlagen in Fluiddynamik, Thermodynamik und Programmieren (Vorlesung: "Models, Algorithms and Data: Introduction to Computing") | |||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||
151-0928-00L | CO2 Capture and Storage and the Industry of Carbon-Based Resources | W | 4 KP | 3G | M. Mazzotti, A. Bardow, V. Becattini, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter | |||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the fundamentals of carbon capture, utilization, and storage and related interdependencies between technosphere, ecosphere, and sociosphere. Topics covered: origin, production, processing, and resource economics of carbon-based resources; climate change in science & policies; CC(U)S systems in power & industrial plants; CO2 transport & storage. | |||||||||||||||||||||||||||||||||||
Lernziel | The lecture aims to introduce carbon dioxide capture, utilization, and storage (CCUS) systems, the technical solutions developed so far, and current research questions. This is done in the context of the origin, production, processing, and economics of carbon-based resources and of climate change issues. After this course, students are familiar with relevant technical and non-technical issues related to the use of carbon resources, climate change, and CCUS as a mitigation measure. The class will be structured in 2 hours of lecture and one hour of exercises/discussion. | |||||||||||||||||||||||||||||||||||
Inhalt | The transition to a net-zero society is associated with major challenges in all sectors, including energy, transportation, and industry. In the IPCC Special Report on Global Warming of 1.5 °C, rapid emission reduction and negative emission technologies are crucial to limiting global warming to below 1.5 °C. Therefore, this course illuminates carbon capture, utilization, and storage as a potential set of technologies for emission mitigation and for generating negative emissions. | |||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documents will be available online. | |||||||||||||||||||||||||||||||||||
Literatur | IPCC Special Report on Global Warming of 1.5°C, 2018. http://www.ipcc.ch/report/sr15/ IPCC AR5 Climate Change 2014: Synthesis Report, 2014. www.ipcc.ch/report/ar5/syr/ IPCC Special Report on Carbon dioxide Capture and Storage, 2005. www.ipcc.ch/activity/srccs/index.htm The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014. http://www.globalccsinstitute.com/publications/global-status-ccs-2014 | |||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | External lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester. | |||||||||||||||||||||||||||||||||||
151-0946-00L | Macromolecular Engineering: Networks and Gels | W | 4 KP | 4G | M. Tibbitt | |||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery. | |||||||||||||||||||||||||||||||||||
Lernziel | The main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience. | |||||||||||||||||||||||||||||||||||
Skript | Class notes and handouts. | |||||||||||||||||||||||||||||||||||
Literatur | Polymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts. | |||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Physics I+II, Thermodynamics I+II | |||||||||||||||||||||||||||||||||||
151-0966-00L | Introduction to Quantum Mechanics for Engineers | W | 4 KP | 2V + 2U | D. J. Norris | |||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering. | |||||||||||||||||||||||||||||||||||
Lernziel | To work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated. | |||||||||||||||||||||||||||||||||||
Inhalt | Fundamentals of Quantum Mechanics - Historical Perspective - Schrödinger Equation - Postulates of Quantum Mechanics - Operators - Harmonic Oscillator - Hydrogen atom - Multielectron Atoms - Crystalline Systems - Spectroscopy - Approximation Methods - Applications in Engineering | |||||||||||||||||||||||||||||||||||
Skript | Class Notes and Handouts | |||||||||||||||||||||||||||||||||||
Literatur | Text: David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3rd Edition, Cambridge University Press. | |||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Analysis III, Mechanics III, Physics I, Linear Algebra II |
- Seite 1 von 1