Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Mathematik Master | ||||||
Wahlfächer Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen. | ||||||
Wahlfächer aus Bereichen der angewandten Mathematik ... vollständiger Titel: Wahlfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten | ||||||
Auswahl: Theoretische Informatik, diskrete Mathematik Im Master-Studiengang Mathematik ist auch 401-3052-05L Graph Theory als Wahlfach anrechenbar, aber nur unter der Bedingung, dass 401-3052-10L Graph Theory nicht angerechnet wird (weder im Bachelor- noch im Master-Studiengang). Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat). | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
252-0408-00L | Cryptographic Protocols | W | 6 KP | 2V + 2U + 1A | M. Hirt | |
Kurzbeschreibung | The course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc. | |||||
Lernziel | Indroduction to a very active research area with many gems and paradoxical results. Spark interest in fundamental problems. | |||||
Inhalt | The course presents a selection of hot research topics in cryptography. The choice of topics varies and may include provable security, interactive proofs, zero-knowledge protocols, secret sharing, secure multi-party computation, e-voting, etc. | |||||
Skript | We provide short lecture notes and handouts of the slides. | |||||
Voraussetzungen / Besonderes | A basic understanding of fundamental cryptographic concepts (as taught for example in the course Information Security or in the course Cryptography Foundations) is useful, but not required. | |||||
263-4660-00L | Applied Cryptography Number of participants limited to 150. | W | 8 KP | 3V + 2U + 2P | K. Paterson | |
Kurzbeschreibung | This course will introduce the basic primitives of cryptography, using rigorous syntax and game-based security definitions. The course will show how these primitives can be combined to build cryptographic protocols and systems. | |||||
Lernziel | The goal of the course is to put students' understanding of cryptography on sound foundations, to enable them to start to build well-designed cryptographic systems, and to expose them to some of the pitfalls that arise when doing so. | |||||
Inhalt | Basic symmetric primitives (block ciphers, modes, hash functions); generic composition; AEAD; basic secure channels; basic public key primitives (encryption,signature, DH key exchange); ECC; randomness; applications. | |||||
Literatur | Textbook: Boneh and Shoup, “A Graduate Course in Applied Cryptography”, https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf. | |||||
Voraussetzungen / Besonderes | Students should have taken the D-INFK Bachelor's course “Information Security" (252-0211-00) or an alternative first course covering cryptography at a similar level. / In this course, we will use Moodle for content delivery: https://moodle-app2.let.ethz.ch/course/view.php?id=14558. | |||||
263-4400-00L | Advanced Graph Algorithms and Optimization | W | 8 KP | 3V + 1U + 3A | R. Kyng | |
Kurzbeschreibung | This course will cover a number of advanced topics in optimization and graph algorithms. | |||||
Lernziel | The course will take students on a deep dive into modern approaches to graph algorithms using convex optimization techniques. By studying convex optimization through the lens of graph algorithms, students should develop a deeper understanding of fundamental phenomena in optimization. The course will cover some traditional discrete approaches to various graph problems, especially flow problems, and then contrast these approaches with modern, asymptotically faster methods based on combining convex optimization with spectral and combinatorial graph theory. | |||||
Inhalt | Students should leave the course understanding key concepts in optimization such as first and second-order optimization, convex duality, multiplicative weights and dual-based methods, acceleration, preconditioning, and non-Euclidean optimization. Students will also be familiarized with central techniques in the development of graph algorithms in the past 15 years, including graph decomposition techniques, sparsification, oblivious routing, and spectral and combinatorial preconditioning. | |||||
Voraussetzungen / Besonderes | This course is targeted toward masters and doctoral students with an interest in theoretical computer science. Students should be comfortable with design and analysis of algorithms, probability, and linear algebra. Having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, but not formally required. If you are not sure whether you're ready for this class or not, please consult the instructor. |
- Seite 1 von 1