Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Bauingenieurwissenschaften Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0138-11L | Bridge Design: Project Competition ![]() ![]() Findet dieses Semester nicht statt. Number of participants limited to 20. All students get on waiting list. Final registration based on application letter (information given in first lecture). Priority will be given to students attending “Bridge Design (101-0138-00 G)” and in the primary target group (Major in Structural Engineering or Projektbasierte Lehrveranstaltungen). | W | 4 KP | 2S | W. Kaufmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This module offers the possibility to apply the fundamentals of the course Bridge Design in a conceptual design project. The scenario is set as a design competition: The students (group of two) will get a basic documentation (service criteria agreement, plans, digital terrain model, geotechnical report, photo documentation, etc.) and will develop a conceptual design suitable for the given site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of the course, students will have developed a convincing bridge design that satisfies following criteria: _ Consideration of governing boundary conditions and constraints. _ Conception of an efficient structural system with an adequate aesthetic expression considering the environment. _ Definition of the relevant actions and decisive load cases. _ Proof of feasibility by dimensioning the main structural elements. _ Schematic overview of construction processes. _ Appropriate presentation and visualisation of the proposed bridge design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The module is built up as follows: 0. Presentation of problem statement / project. (1st week of semester) 1. Team registration (teams of two students). 2. Issue of documents. 3. Introduction to design tools & working methods. 4. Working on project (milestones): ... a. Define requirements and boundary conditions. ... b. Study of references and possible concepts ... c. Choice of best variant ... d. Structural modelling & calculations ... e. Plans & visualisation 5. Submission | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | It is highly recommended to attend the course “Bridge Design (101-0138-00 G)” simultaneously. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0523-00L | Industrialized Construction ![]() Findet dieses Semester nicht statt. | W | 4 KP | 3G | D. Hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course offers an introduction and overview to Industrialized Construction, a rapidly-emerging concept in the construction industry. The course will present the driving forces, concepts, technologies, and managerial aspects of Industrialized Construction, with an emphasis on current industry applications and future entrepreneurial opportunities in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | By the end of the course, students should be able to: 1. Describe the characteristics of the nine integrated areas of industrialized construction: planning and control of processes; developed technical systems; prefabrication; long-term relations; logistics; use of ICT; re-use of experience and measurements; customer and market focus; continuous improvement. 2. Assess case studies on successful or failed industry implementations of industrialized construction in Europe, Japan and North America. 3. Propose a framework for a new industrialized construction company for a segment of the industrialized construction market (e.g. housing, commercial, schools) including the company’s business model, technical platform, and supply chain strategy. 4. Identify future trends in industrialized construction including the use of design automation, digital fabrication, and Industry 4.0. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The application of Industrialized Construction - also referred to as prefabrication, offsite building, or modular construction – is rapidly increasing in the industry. Although the promise of industrialized construction has long gone unrealized, several market indicators show that this method of construction is quickly growing around the world. Industrialized Construction offers potential for increased productivity, efficiency, innovation, and safety on the construction site. The course will present the driving forces, concepts, technologies, and managerial aspects of Industrialized Construction. The course unpacks project-orientated vs. product-oriented approaches while showcasing process and technology platforms used by companies in Europe, the UK, Japan, and North America. The course highlights future business models and entrepreneurial opportunities for new industrialized construction ventures. The course is organized around a group project carried out in teams of 3-4. Each specific class will include some theory about industrialized construction from a strategic and/or technological perspective. There will be several external guest lectures as well. During the last hour of the course, students will work in project teams to propose a framework for a new industrialized construction venture. The teams will need to determine their new company’s product offering, business model, technical platform, technology solutions, and supply chain strategy. It is intended to hold a group excursion to a factory for a 1/2 day visit. However in 2021, this will be determined pending the status of COVID-19 restrictions. planned course activities include a 1/2 day factory visit Students who are unable to attend the visit can make up participation through independent research and the writing of a short paper. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A full list of required readings will be made available to the students via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0517-01L | Project Management: Pre-Tender to Contract Execution | W | 4 KP | 2G | J. J. Hoffman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course (PM 2)will provide a comprehensive overview and understanding of the techniques, processes, tools and terminology to manage the Project Triangle (time, cost, quality) and to organize, analyze, control and report a complex project from Pre-Tender stage to Contract signature. This course is part 2 of a 3 part course, see notice below. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students will have the understanding of the Project Management duties and responsibilities from the Pre-Tender stage of a project to Contract Execution. The project teams will prepare a project tender proposal base on a request for quotation on a construction project. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Project scope definition and project organization - Technical specification proposals - Work Breakdown Structure - Estimating - Schedule development - Interface management - Resource and cost integration - Risk and opportunity identification and quantification - Contract review and analysis - Project life cycle - Contract Execution - Project Manager Check List | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The slides will either be distributed at the beginning of the class, or made available online (via Moodle) prior to class. A copy of the appropriate chapter of the script, the assignment and any other assigned reading materials will be available via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Appropriate reading material (e.g., chapters out of certain textbooks or trade articles) will be assigned when necessary and made available via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This is part 2 of a 3 part course. Part 1 will give the student an introduction to general tools in project management. Part 3 will take the student through Project Execution of the Project. The students will be randomly assigned to teams of 5 max. Students will be graded as a team based on the final Project report and the in-class or on line oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0278-00L | Hochwasserschutz | W | 3 KP | 2G | R. Boes, J. Eberli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Konzepte und bauliche Massnahmen zur Verhinderung bzw. Verminderung von Hochwasserschäden sowie erfolgversprechende Methoden zur Umsetzung einer ganzheitlichen Planung in der Praxis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Kennenlernen der Prozesse, die zu Hochwasserschäden führen, der verschiedenen Konzepte und baulichen Massnahmen, mit denen sie verhindert bzw. vermindert werden können sowie erfolgversprechende Methoden zur Umsetzung der Planung in der Praxis. Integrales Risikomanagement. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Erläuterung der massgebenden Prozesse: Überflutung, Auflandung, Übersarung, Seiten- und Tiefenerosion, Murgänge. Konzept der differenzierten Schutzziele für verschiedene Landnutzungen (von Naturland bis Industriegebiet). Grundsätzliche Möglichkeiten des Hochwasserschutzes. Raumplanung auf der Basis von Gefahrenzonen. Klassische Massnahmen gegen Hochwasserschäden an Beispielen (Kapazitätserhöhung, Entlastungsbauwerke, Rückhaltbecken, Flutmulden, Polder). Objektschutz als weiterführende Massnahme. Unterhalt. Betrachtung des Überlastfalls, Notfallmassnahmen. Schadenbestimmung und Risikoabschätzung. Umgang mit dem verbleibenden Risiko. Zielkonflikte bei der Umsetzung der Massnahmen. Angepasste Vorgehensweise. Bearbeiten von Fallstudien in der Gruppe. Exkursion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Hochwasserschutz-Skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Richtlinien und Wegleitungen der zuständigen Schweizer Bundesämter (insbesondere Bundesamt für Umwelt, BAFU) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0526-00L | Introduction to Visual Machine Perception for Architecture, Construction and Facility Management ![]() | W | 3 KP | 2G | I. Armeni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course is an introduction to Visual Machine Perception technology, and specifically Computer Vision and Machine Learning, for Architecture, Construction, and Facility Management (ACFM). It will explore fundamentals in these Artificial Intelligence (AI) technologies in a tight reference to three applications in ACFM, namely architectural design, construction renovation, and facility management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | By the end of the course students will develop computational thinking related to visual machine perception applications for the ACFM domain. Specifically, they will: -Gain a fundamental understanding of how this technology works and the impact it can have in the ACFM industry by being exposed to example applications. -Be able to identify limitations, pitfalls, and bottlenecks in these applications. -Critically think on solutions for the above issues. -Acquire hands-on experience in creatively thinking and designing an application given a base system. -Use this course as a “stepping-stone” or entry-point to Machine Learning-intensive courses offered in D-BAUG and D-ARCH. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The past few years a lot of discussion has been sparked on AI in the Architecture, Construction, and Facility Management (ACFM) industry. Despite advancements in this interdisciplinary field, we still have not answered fundamental questions about adopting and adapting AI technology for ACFM. In order to achieve this, we need to be equipped with rudimentary knowledge of how this technology works and what are essential points to consider when applying AI to this specific domain. In addition, the availability of sensors that collect visual data in commodity hardware (e.g., mobile phone and tablet), is creating an even bigger pressure in identifying ways that new technology can be leveraged to increase efficiency and decrease risk in this trillion-dollar industry. However, cautious and well-thought steps need to be taken in the right direction, in order for such technologies to thrive in an industry that showcases inertia in technological adoption. The course will unfold as two parallel storylines that intersect in multiple places: 1) The first storyline will introduce fundamentals in computer vision and machine learning technology, as building blocks that one should consider when developing related applications. These blocks will be discussed with respect to latest developments (e.g., deep neural networks), pointing out their impact in the final solution. 2) The second storyline consists of 3 ACFM processes, namely architectural design, construction renovation, and facility management. These processes will serve as application examples of the technological storyline. In the points of connection students will see the importance of taking into account the application requirements when designing an AI system, as well as their impact on the building blocks. Guest speakers from both the AI and ACFM domains will complement the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course does not require any background in AI, Computer Science, coding, or the ACFM domain. It is designed for students of any background and knowledge on these topics. Despite being an introductory class, it will still engage advanced students in the aforementioned topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0194-10L | Seismic Design and Evaluation of Bridges Findet dieses Semester nicht statt. | W | 2 KP | 2G | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The aim of this course is to provide the fundamental knowledge on the seismic design and evaluation of bridges in Switzerland and worldwide. The course focuses on the practical application of this knowledge through the seismic design and evaluation of real bridges located in Switzerland. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The existing bridge inventory in Switzerland consists of about 3340 bridges, facilitating the continuous function of the national highway transportation network. Furthermore, a large number of new bridges are under construction in Switzerland. These bridges serve as intermediate links, connecting different communities and enabling the accessibility of different infrastructure components. Within this frame, the seismic protection of new and existing bridges is critical for the maintenance of the functionality of our communities and their ability to recover after a strong earthquake event. Along these lines, this course aims to provide knowledge of the latest code provisions and analysis methods for the seismic design and evaluation of bridges in Switzerland and worldwide. This knowledge will be provided through a combination of theoretical background with practical case study examples. The students will work on a project related to the presented case studies, thus obtaining hands-on experience in the seismic evaluation and seismic retrofitting of existing bridges located in Switzerland. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lecture unit 1: 1. Introduction: bridges in low and moderate seismic hazard regions 2. Common seismic deficiencies of typical bridges Lecture unit 2: 3. Dynamic modelling of bridge systems 4. Dynamic modelling of bridge components (e.g. columns, bearings, joints, abutments, reinforcement splices, foundations, piles) Lecture unit 3: 5. Nonlinear static analysis 6. Nonlinear dynamic analysis Lecture unit 4: 7. Swiss code: seismic design 8. Swiss code: seismic evaluation Lecture unit 5: 9. Swiss example: seismic design issues 10. Swiss example: seismic evaluation Lecture unit 6 11. Seismic evaluation and retrofitting of bridges: EU perspective (low and moderate seismic hazard regions) 12. Seismic evaluation and retrofitting of bridges: US perspective (low and moderate seismic hazard regions) Lecture unit 7: 13. Project presentations 14. Course summary | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Bridge Design (101-0138-00L) and Seismic Design of Structures I (101-0188-00L) or equivalent, taken previously or being attended in parallel with this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0378-00L | Soil Dynamics ![]() | W | 4 KP | 2G | I. Anastasopoulos, A. Marin, L. Sakellariadis, T. M. Weber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Grundlagen bodendynamischer Problemstellungen, Einführung in das geotechnische Erdbebeningenieurwesen, Lösen einfacher Probleme | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung der Grundlagen, um bodendynamische Problemstellungen erkennen zu können, einfache Probleme selbständig zu lösen und bei komplexeren Aufgaben Spezialisten effizient beauftragen zu können. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Grundlagen der Dynamik und der Bodendynamik: Unterschiede und Gemeinsamkeiten Bodenmechanik-Bodendynamik. Repetition der Grundlagen am Beispiel des Einmassenschwingers; Wellenausbreitung im elastischen Halbraum und im realen Boden. Einfluss der geologischen Schichtung, des Grundwassers etc. auf Wellenausbreitung. Dynamische Bodenkennziffern (Deformation und Festigkeit): Konstitutive Modellierung des Bodens, Bodenkennziffern für Sand, Kies, Ton, Fels. Bestimmung der Bodenkennziffern im Labor und Feld. Erschütterungen: Ausbreitungsprognose von Erschütterungen. Beurteilung von Erschütterungen bezüglich Gebäudeschäden und Belästigung des Menschen. Reduktion von Erschütterungen. Geotechnische Erdbebenprobleme: Grundbegriffe. Schäden infolge Erdbeben. Analyse der seismischen Gefährdung, Ermittlung von Bemessungsbeben. Einfluss der lokalen Geologie und Topographie auf die Bodenerschütterung. Grundlagen der Boden-Bauwerksinteraktion. Grundsätze der erdbebengerechten Dimensionierung von Fundationen, Stütz- und Erdbauwerken (Dämme). Bodenverflüssigung. Anwendung der SIA 261/267/269-8. Probleme der Gebrauchstauglichkeit: Bleibende Verformungen aufgrund wiederholter Belastung, Sackungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Buch Studer, J.; Laue, J. & Koller, M.: Bodendynamik, Springer Verlag 2007 Ergänzt durch Aufsätze und Notizen die elektronisch zu Verfügung gestellt werden | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Towhata, I. (2008) Geotechnical Earthquake Engineering. Springer Verlag, Berlin Kramer, S. L. (1996) Geotechnical earthquake engineering. Pearson Education India. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagenwissen der Mechanik und der Geotechnik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0194-00L | Seismic Evaluation and Retrofitting of Existing Buildings | W | 2 KP | 1G | A. Tsiavos | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The aim of this course is to present the state of the art of the current procedures for seismic evaluation and retrofitting of existing buildings in Switzerland (Norm SIA 269/8) and worldwide. Emphasis will be given on the practical application of these procedures in real buildings located in Switzerland, through case studies presented by experts in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | A large percentage of the existing building inventory worldwide has been constructed before the introduction of the current seismic code provisions. The seismic deficiencies observed in many of these structures are a direct outcome of their non-compliance with these provisions and the established engineering practices in seismic design. Moreover, the unavoidable material deterioration in these structures could further inhibit their seismic performance. Therefore, the knowledge of the current procedures and common practices for the seismic evaluation and retrofitting of buildings is of paramount importance. This course presents an overview of these procedures through a wide spectrum of applied case studies in Switzerland and worldwide. The students will work on a project related to the presented case studies, thus obtaining deep understanding on the application of these procedures and a feeling on how to engineer practical retrofitting strategies towards the seismic upgrading of existing buildings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction to seismic hazard and seismic performance objectives. 2. Common structural deficiencies and observed damage patterns in buildings due to strong earthquake ground motion excitation. 3. Seismic evaluation of buildings in Switzerland using Norm SIA 269/8: Presentation of the code in steps and discussion of the critical issues. 4. Seismic retrofitting of buildings in Switzerland using Norm SIA 269/8: Presentation of the code in steps and discussion of the critical issues. 5. Application of seismic evaluation using SIA 269/8 on an existing building in Switzerland. 6. Application of seismic retrofitting using SIA 269/8 on an existing building in Switzerland. 7. Seismic evaluation methodologies worldwide: State of the art. Presentation of illustrative examples. 8. Introduction to Yield Point Spectra and the Constant Yield Displacement Evaluation (CYDE) method. 9. Seismic retrofitting strategies worldwide: State of the art. Presentation of illustrative examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The attendance of the course Existing Structures (Erhaltung von Tragwerken-101-0129-00L) and the participation in the course Seismic Design of Structures I (101-0188-00L) in parallel with this course are highly recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0200-10L | Forschungsbezogene Projektarbeit ![]() | W | 11 KP | 24A | Betreuer/innen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Bearbeitung einer konkreten Aufgabenstel-lung als Vorbereitung auf die Master-Arbeit | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Selbständiges, strukturiertes und wissenschaftliches Arbeiten fördern; typische ingenieurwissenschaftliche Arbeitsmethoden anwenden lernen; Fachwissen auf dem Gebiet der bearbeiteten Aufgabenstellung vertiefen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Projektarbeit steht unter der Leitung eines Professors/einer Professorin. Das Thema wird im Rahmen der Master-Arbeit weiter bearbeitet. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0579-00L | Infrastructure Management 2: Evaluation Tools | W | 6 KP | 2G | S. Moghtadernejad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides tools to predict the service being provided by infrastructure in situations where the infrastructure is expected to 1) to evolve slowly with relatively little uncertainty over time, e.g. due to the corrosion of a metal bridge, and 2) to change suddenly with relatively large uncertainty, e.g. due to being washed away from an extreme flood. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course learning objective is to equip students with tools to be used to the service being provided from infrastructure. The course increases a student's ability to analyse complex problems and propose solutions and to use state-of-the-art methods of analysis to assess complex problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Reliability Availability and maintainability Regression analysis Event trees Fault trees Markov chains Neural networks Bayesian networks | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All necessary materials (e.g. transparencies and hand-outs) will be distributed before class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Appropriate reading material will be assigned when necessary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Although not an official prerequisite, it is perferred that students have taken the IM1:Process course first. Understanding of the infrastructure management process enables a better understanding of where and how the tools introduced in this course can be used in the management of infrastructure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0149-01L | Advanced Analysis and Design of Steel Structures ![]() | W | 3 KP | 2G | A. Taras | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In „Advanced Analysis and Design of Steel Structures”, students will learn the background and practical application of simulation-based analysis and design methods in the design and assessment of steel and steel-concrete composite structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In „Advanced Analysis and Design of Steel Structures”, students will learn the background and practical application of simulation-based analysis and design methods in the design and assessment of steel and steel-concrete composite structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will begin with introductory lessons on the structural behaviour of plated and shell-like structures as they are found in bridges, crane girders, masts and tanks or other vessels, and the main design criteria used in standards and product specifications. This is followed by an introduction of numerical methods of analysis used for these design tasks. These include: - Materially nonlinear analysis of steel and composite elements in frames and trusses - Linear buckling analysis - Geometrically nonlinear analysis of perfect and imperfect structures - Geometrically and materially nonlinear analysis - Methods of fatigue analysis: stress design by global and local approaches - Methods of fatigue analysis: calculation of stress intensity factors and J-integrals, crack propagation - Fire structural engineering of steel elements: thermal and stress analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture Slides, Notes on Worked Examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic and Advanced Courses in Steel & Composite Construction, E.g. Stahlbau 1 + 2, Advanced Steel Construction (MSc course) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0178-01L | Uncertainty Quantification in Engineering ![]() | W | 3 KP | 2G | B. Sudret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Uncertainty quantification aims at studying the impact of aleatory and epistemic uncertainty onto computational models used in science and engineering. The course introduces the basic concepts of uncertainty quantification: probabilistic modelling of data (copula theory), uncertainty propagation techniques (Monte Carlo simulation, polynomial chaos expansions), and sensitivity analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this course students will be able to properly pose an uncertainty quantification problem, select the appropriate computational methods and interpret the results in meaningful statements for field scientists, engineers and decision makers. The course is suitable for any master/Ph.D. student in engineering or natural sciences, physics, mathematics, computer science with a basic knowledge in probability theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course introduces uncertainty quantification through a set of practical case studies that come from civil, mechanical, nuclear and electrical engineering, from which a general framework is introduced. The course in then divided into three blocks: probabilistic modelling (introduction to copula theory), uncertainty propagation (Monte Carlo simulation and polynomial chaos expansions) and sensitivity analysis (correlation measures, Sobol' indices). Each block contains lectures and tutorials using Matlab and the in-house software UQLab (www.uqlab.com). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Detailed slides are provided for each lecture. A printed script gathering all the lecture slides may be bought at the beginning of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A basic background in probability theory and statistics (bachelor level) is required. A summary of useful notions will be handed out at the beginning of the course. A good knowledge of Matlab is required to participate in the tutorials and for the mini-project. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0691-00L | Towards Efficient and High-Performance Computing for Engineers ![]() | W | 4 KP | 3G | D. Kammer, M. Pundir | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an introduction to various programming techniques and tools for the development of scientific simulations (using C++). It provides the practical and theoretical basis for high-performance computing (HPC) including data structure, testing, performance evaluation and parallelization. The course bridges the gap between introductory and advanced programming courses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course provides an overview of programming techniques relevant for efficient and high-performance computing. It builds on introductory coding experience (e.g. matlab/python/java) and introduces the students to more advanced tools, specifically C++, external libraries, and supercomputers. The objective of this course is to introduce various approaches of good practice in developing your own code (for your research or engineering project) or using/modifying existing open-source programs. The course targets engineering students and seeks to provide a practical introduction towards performance-based computational simulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. code versioning and DevOps lifecycle 2. introduction to C++ 3. structured programming 4. object-oriented programming 5. code testing 6. code performance (design, data structure, evaluating, using external libraries) 7. code parallelization 8. running simulations on supercomputers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Will be provided during the lecture via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Will be provided during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A good knowledge of MATLAB (or Python or java) is necessary for attending this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0488-01L | Fuss- und Veloverkehr | W | 6 KP | 4G | U. Walter, E. Bosina, M. Meeder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Grundlagen der Fussverkehrsplanung sowie der Planung von Anlagen des Radverkehrs, Transporttechnische Eigenschaften des Menschen, Entwurf von Fuss- und Radverkehrsnetzen, Anlagen des Fuss- und Radverkehrs, Mikrosimulation des Fussgängerverkehrs, Beurteilung von Leistungsfähigkeit und Verkehrsqualität | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Erwerb von Grundkenntnissen im Bereich der Fuss- und Radverkehrsplanung, Kenntnis und Verständnis der transporttechnischen Eigenschaften des Menschen und der daraus folgenden Konsequenzen für den Entwurf und die Planung entsprechender Verkehrsanlagen, Fähigkeit zur Beurteilung der Verkehrsqualität und Leistungsfähigkeit, Grundkenntnisse über die Mikrosimulation von Fussgängerströmen als zeitgemässes Planungs- und Analyseinstrument | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1) Einführung Fuss- und Veloverkehr 2) Eigenschaften: Rad / Radfahrer / Zielgruppen 3) Aufbau von Veloverkehrsnetzen 4) Übung: Planung eines Radverkehrsnetzes. 5) Anlagenentwurf Veloverkehr 6) Veloparkierung 7) Fussgängereigenschaften, Geschwindigkeit 8) Fussverkehr: Leistungsfähigkeit und Qualität 9) Fussverkehr Anlagengestaltung 10) Fussgängeranlagen des öffentlichen Verkehrs 11) Fussverkehr: Hindernisfreie Verkehrsräume 12) Zählungen Fuss- und Veloverkehr 13) Simulation des Fussverkehrs 14) Technologie der Mikrosimulation des Fussverkehrs 15) Übung: Dimensionierung von Fussgängeranlagen 16) Shared Space 17) Förderung des Fuss- und Veloverkehrs 18) Exkursionen zu Themen des Fuss- und Veloverkehrs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Ausgewählte Materialien werden über die Moodle-Plattform in elektronischer Form zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Auf weiterführende Literatur wird jeweils in den Vorlesungen hingewiesen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Die Vorlesung wird unterstützt durch 2 Übungen sowie 2 Exkursionen zu den Themen Fuss- und Radverkehr. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0138-00L | Bridge Design ![]() | W | 6 KP | 4G | W. Kaufmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course presents the fundamentals of bridge design. It covers the entire range from conceptual design to construction, encompassing all relevant building materials. The focus lies on the structural behaviour of today’s most important bridge typologies and their suitability for certain boundary conditions, the dimensioning of the main structural elements as well as construction methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successful completion of this course, the student should be able to: - Define the main bridge design parameters and identify constraints and boundary conditions - Explain the structural behaviour and peculiarities of today’s most important bridge typologies - Explain the main elements of bridges and their structural behaviour - Define the relevant actions on bridges - Dimension a standard bridge (pre-dimensioning by hand; dimensioning using computer-aided tools) - Explain the most relevant bridge construction and erection methods - Select an appropriate typology and conceive a convincing bridge for a site with its specific boundary conditions - Name the most eminent bridge designers and their relevant works | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course is built up as follows: 1. Introduction 2. Conceptual design 3. Superstructure / Girder bridges 4. Support and articulation 5. Substructure 6. Arch bridges 7. Frame bridges 8. Special girder bridges 9. Cable-supported bridges The course is complemented by - Guest lectures by leading bridge designers active in industry - Inverted classroom exercises on conceptual bridge design - Slides on eminent bridge designers and their works - Exercises (homework) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes (slides with explanations) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Menn C.: Prestressed Concrete Bridges. Basel: Birkhäuser Basel, 1990 (available online at ETH Library) Hirt, M., Lebet, J.P.: Steel Bridges. EPFL Press, New York, 2013 (available online at ETH Library) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course is part of the MSc specialisation in structures and requires solid knowledge in structural analysis and design. Students are assumed to be proficient in the material taught in the following courses offered in the BSc in Civil Engineering at ETH Zurich (or have acquired equivalent knowledge elsewhere): - Theory of structures I+II - Steel structures I+II (incl. steel-concrete composite structures) - Structural Concrete I+II (incl. prestressed concrete) The flipped classroom exercises are preparing the students for Part 1 of the exam (conceptual design). Active participation is highly recommended to all students who have not conceived a bridge. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0388-00L | Planning of Underground Space ![]() ![]() | W | 3 KP | 2G | A. Cornaro | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Urban underground space is the undiscovered or underutilised asset that can help shape the cities of the future. Planning the urban subsurface calls for multi disciplinary professionals to work together in shaping a new urban tissue beneath our cities. The need to plan the third dimension in the subsurface is critical in making our cities future proof, resilient and sustainable. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Gain an appreciation and knowledge of what lies beneath our feet and what an asset the underground is for our cities. The need to plan this asset is more complex than on the surface, as it is invisible and in parts impenentrable. We look at methods and tools to gain an understanding of the subsurface and what issues and challenges are involved in planning it. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Weekly lectures on various topics involving cities and the subsurface: •Major aspects of urban development •The Subsurface as the final frontier •Historical approaches to underground space development •Urban sustainability aspects •Modelling and mapping the underground •Policy building and urban planning •Design and architecture -creating a new urban tissue •Constructability of underground spaces •Future cities -resilient cities •Governance and legal challenges •Investment aspects and value capture •Future proofing our infrastructure •Best practice of underground space use •Excursion to underground facility (if possible) •Guest speakers on relevant topics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | •Presentation slides •Book: Underground Spaces Unveiled: Planning and Creating the Cities of the Future, ICE Publishing, 2018, Admiraal, H., Cornaro, A., ISBN 978-0-7277-6145-3 •Numerous additional relevant book excerpts and articles, as well as relevant videos •Material from guest presenters •See also link "learning materials" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | various articles and books will be recommended during the course please see also weblinks "learning materials" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0408-00L | Praktikum Siedlung und Verkehr ![]() Maximale Teilnehmerzahl: 25 | W | 3 KP | 2P | B. Vitins | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Dieses Praktikum wendet die Methoden der Verkehrsplanung basierend auf Raumstrukturen beispielhaft an. Die Studierenden erarbeiten anhand realen Daten einer Fallstudie die vier Schritte der Verkehrsnachfrageberechnung und erstellen Verbesserungsszenarien für Verkehrsinfrastruktur und Raumplanung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Vorgehen zur Analyse und Lösung verkehrsplanerischer Fragestellungen - Wechselwirkung zwischen Raum- und Verkehrsplanung - Erstellung von Modellen zur Lösung planerischer Aufgaben - Plausibilisierung und Kalibrierung der Modelle - Ausarbeitung von Lösungen, Vorschlag von Massnahmen - Beurteilung der Massnahmen und deren Auswirkungen |
Seite 1 von 1