Suchergebnis: Katalogdaten im Frühjahrssemester 2022
DAS in Data Science | ||||||
Vertiefungen | ||||||
Image Analysis & Computer Vision | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0391-00L | Medical Image Analysis Basic knowledge of computer vision would be helpful. | W | 3 KP | 2G | E. Konukoglu, M. A. Reyes Aguirre | |
Kurzbeschreibung | It is the objective of this lecture to introduce the basic concepts used in Medical Image Analysis. In particular the lecture focuses on shape representation schemes, segmentation techniques, machine learning based predictive models and various image registration methods commonly used in Medical Image Analysis applications. | |||||
Lernziel | This lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas. | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. Preferred: Basic knowledge of computer vision and machine learning would be helpful. The course will be held in English. | |||||
227-1034-00L | Computational Vision (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: INI402 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 KP | 2V + 1U + 1A | D. Kiper | |
Kurzbeschreibung | This course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision. | |||||
Lernziel | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Inhalt | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Literatur | Books: (recommended references, not required) 1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997. 2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995. | |||||
252-0579-00L | 3D Vision | W | 5 KP | 3G + 1A | M. Pollefeys, D. B. Baráth | |
Kurzbeschreibung | The course covers camera models and calibration, feature tracking and matching, camera motion estimation via simultaneous localization and mapping (SLAM) and visual odometry (VO), epipolar and mult-view geometry, structure-from-motion, (multi-view) stereo, augmented reality, and image-based (re-)localization. | |||||
Lernziel | After attending this course, students will: 1. understand the core concepts for recovering 3D shape of objects and scenes from images and video. 2. be able to implement basic systems for vision-based robotics and simple virtual/augmented reality applications. 3. have a good overview over the current state-of-the art in 3D vision. 4. be able to critically analyze and asses current research in this area. | |||||
Inhalt | The goal of this course is to teach the core techniques required for robotic and augmented reality applications: How to determine the motion of a camera and how to estimate the absolute position and orientation of a camera in the real world. This course will introduce the basic concepts of 3D Vision in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on 3D Vision topics, with an emphasis on robotic vision and virtual and augmented reality applications. | |||||
263-3710-00L | Machine Perception | W | 8 KP | 3V + 2U + 2A | O. Hilliges | |
Kurzbeschreibung | Recent developments in neural networks (aka “deep learning”) have drastically advanced the performance of machine perception systems in a variety of areas including computer vision, robotics, and human shape modeling This course is a deep dive into deep learning algorithms and architectures with applications to a variety of perceptual and generative tasks. | |||||
Lernziel | Students will learn about fundamental aspects of modern deep learning approaches for perception and generation. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in learning-based computer vision, robotics, and shape modeling. The optional final project assignment will involve training a complex neural network architecture and applying it to a real-world dataset. The core competency acquired through this course is a solid foundation in deep-learning algorithms to process and interpret human-centric signals. In particular, students should be able to develop systems that deal with the problem of recognizing people in images, detecting and describing body parts, inferring their spatial configuration, performing action/gesture recognition from still images or image sequences, also considering multi-modal data, among others. | |||||
Inhalt | We will focus on teaching: how to set up the problem of machine perception, the learning algorithms, network architectures, and advanced deep learning concepts in particular probabilistic deep learning models The course covers the following main areas: I) Foundations of deep learning. II) Advanced topics like probabilistic generative modeling of data (latent variable models, generative adversarial networks, auto-regressive models, invertible neural networks). III) Deep learning in computer vision, human-computer interaction, and robotics. Specific topics include: I) Introduction to Deep Learning: a) Neural Networks and training (i.e., backpropagation) b) Feedforward Networks c) Timeseries modelling (RNN, GRU, LSTM) d) Convolutional Neural Networks for classification II) Advanced topics: a) Latent variable models (VAEs) b) Generative adversarial networks (GANs) c) Autoregressive models (PixelCNN, PixelRNN, TCNs) d) Invertible Neural Networks / Normalizing Flows III) Applications in machine perception and computer vision: a) Fully Convolutional architectures for dense per-pixel tasks (i.e., instance segmentation) b) Pose estimation and other tasks involving human activity c) Neural shape modeling (implicit surfaces, neural radiance fields) d) Closed-loop control and deep reinforcement learning | |||||
Literatur | Deep Learning Book by Ian Goodfellow and Yoshua Bengio | |||||
Voraussetzungen / Besonderes | This is an advanced grad-level course that requires a background in machine learning. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. The course will focus on state-of-the-art research in deep learning and will not repeat the basics of machine learning Please take note of the following conditions: 1) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge 2) All practical exercises will require basic knowledge of Python and will use libraries such as Pytorch, scikit-learn, and scikit-image. We will provide introductions to Pytorch and other libraries that are needed but will not provide introductions to basic programming or Python. The following courses are strongly recommended as prerequisites: * "Visual Computing" or "Computer Vision" The course will be assessed by a final written examination in English. No course materials or electronic devices can be used during the examination. Note that the examination will be based on the contents of the lectures, the associated reading materials, and the exercises. Starting in SS22, the exam (3h) will be an end-of-term exam and take place at the end of the teaching period. |
- Seite 1 von 1