Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Umweltnaturwissenschaften Master | ||||||
Ergänzungen | ||||||
Ergänzung in Nachhaltige Energienutzung | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
052-0610-00L | Energie- und Klimasysteme II | W | 2 KP | 2G | A. Schlüter | |
Kurzbeschreibung | Im zweiten Semester des Jahreskurses werden die wesentlichen physikalischen Prinzipien, Konzepte, Komponenten und Systeme für die effiziente und erneuerbare Versorgung von Gebäude mit Strom und Licht sowie deren Automation behandelt. Abhängigkeiten und Interaktionen zwischen technischen Systemen und dem architektonischen und städtebaulichen Entwerfen werden aufgezeigt. | |||||
Lernziel | Ziel der Vorlesung ist die Kenntnis der physikalischen Grundlagen, der relevanten Konzepte und technischen Systeme für die effiziente und nachhaltige Versorgung von Gebäuden. Mittels überschlägiger Berechnungsmethoden wird die Ermittlung relevanter Grössen und die Identifikation wichtiger Parameter geübt. Auf diese Weise können passende Ansätze für den eigenen Entwurf ausgewählt, qualitativ und quantitativ bewertet und integriert werden. | |||||
Inhalt | 1. Einführung und Überblick 2. Strom 3. Integriertes Design | |||||
Skript | Die Folien aus der Vorlesung dienen als Skript und sind als download erhältlich. | |||||
Literatur | Eine Liste weiterführender Literatur ist am Lehrstuhl erhältlich. | |||||
151-0206-00L | Energy Systems and Power Engineering | W | 4 KP | 2V + 2U | R. S. Abhari, A. Steinfeld | |
Kurzbeschreibung | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||
Lernziel | Introductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing. | |||||
Inhalt | World primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles. | |||||
Skript | Vorlesungsunterlagen werden verteilt | |||||
151-0928-00L | CO2 Capture and Storage and the Industry of Carbon-Based Resources | W | 4 KP | 3G | M. Mazzotti, A. Bardow, V. Becattini, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter | |
Kurzbeschreibung | This course introduces the fundamentals of carbon capture, utilization, and storage and related interdependencies between technosphere, ecosphere, and sociosphere. Topics covered: origin, production, processing, and resource economics of carbon-based resources; climate change in science & policies; CC(U)S systems in power & industrial plants; CO2 transport & storage. | |||||
Lernziel | The lecture aims to introduce carbon dioxide capture, utilization, and storage (CCUS) systems, the technical solutions developed so far, and current research questions. This is done in the context of the origin, production, processing, and economics of carbon-based resources and of climate change issues. After this course, students are familiar with relevant technical and non-technical issues related to the use of carbon resources, climate change, and CCUS as a mitigation measure. The class will be structured in 2 hours of lecture and one hour of exercises/discussion. | |||||
Inhalt | The transition to a net-zero society is associated with major challenges in all sectors, including energy, transportation, and industry. In the IPCC Special Report on Global Warming of 1.5 °C, rapid emission reduction and negative emission technologies are crucial to limiting global warming to below 1.5 °C. Therefore, this course illuminates carbon capture, utilization, and storage as a potential set of technologies for emission mitigation and for generating negative emissions. | |||||
Skript | Lecture slides and supplementary documents will be available online. | |||||
Literatur | IPCC Special Report on Global Warming of 1.5°C, 2018. http://www.ipcc.ch/report/sr15/ IPCC AR5 Climate Change 2014: Synthesis Report, 2014. www.ipcc.ch/report/ar5/syr/ IPCC Special Report on Carbon dioxide Capture and Storage, 2005. www.ipcc.ch/activity/srccs/index.htm The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014. http://www.globalccsinstitute.com/publications/global-status-ccs-2014 | |||||
Voraussetzungen / Besonderes | External lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester. | |||||
227-0664-00L | Technology and Policy of Electrical Energy Storage | W | 3 KP | 2G | V. Wood, T. Schmidt | |
Kurzbeschreibung | With the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence and growing the use of renewables, developing & implementing energy storage solutions for electric mobility & grid stabilization represent a key technology & policy challenge. This course uses lithium ion batteries as a case study to understand the interplay between technology, economics, and policy. | |||||
Lernziel | The students will learn of the complexity involved in battery research, design, production, as well as in investment, economics and policy making around batteries. Students from technical disciplines will gain insights into policy, while students from social science backgrounds will gain insights into technology. | |||||
Inhalt | With the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence, and integrating renewables on the electric grid, developing and implementing energy storage solutions for electric mobility and grid stabilization represent a key technology and policy challenge. The class will focus on lithium ion batteries since they are poised to enter a variety of markets where policy decisions will affect their production, adoption, and usage scenarios. The course considers the interplay between technology, economics, and policy. * intro to energy storage for electric mobility and grid-stabilization * basics of battery operation, manufacturing, and integration * intro to the role of policy for energy storage innovation & diffusion * discussion of complexities involved in policy and politics of energy storage | |||||
Skript | Materials will be made available on the website. | |||||
Literatur | Materials will be made available on the website. | |||||
Voraussetzungen / Besonderes | Strong interest in energy and technology policy. | |||||
227-0730-00L | Power Market II - Modeling and Strategic Positioning | W | 6 KP | 4G | D. Reichelt, G. A. Koeppel | |
Kurzbeschreibung | Optionen in der Energiewirtschaft Portfolio und Risiko Management: Hedging-Strategien und Risiko Bewertung Optimierung und Hedging von Hydrokraftwerken Bewertung von Kraftwerken mit Realoptionen Kapazitätsmärkte und Quotensysteme Komplexe Energielieferverträge mit Optionalitäten Strategische Positionierung von Energieversorgungsunternehmen | |||||
Lernziel | Die Studenten kennen die wesentlichen Derivate, die in der Elektrizitätswirtschaft zur Anwendung gelangen. Sie können Strategien zur Preisabsicherung erarbeiten bzw. bewerten. Sie verstehen die Optimierung von komplexen Wasserkraftwerksanlagen, kennen die Thematik der Kapazitätsmärkte und der Quotensysteme. Sie kennen die Grundlagen der Discounted Cash-flow (DCF) Methode sowie der Realoptionen und können sie für die Bewertung von Kraftwerken anwenden. Die Studenten können komplexe Energielieferverträge in die einzelnen Komponenten zerlegen und die Risiken identifizieren. | |||||
Inhalt | Optionen in der Energiewirtschaft: Optionsbewertung mit Binominalen Bäumen und der Black-Scholes Formel, Sensitivitäten, implizite Volatilität Portfolio und Risiko Management: Delta- und Gamma-neutrale Preisabsicherung, Vergleich und Bewertung von Hedging-Strategien, Risiko Identifikation und -bewertung (Fallbeispiel) Optimierung und Hedging von Hydrokraftwerken Bewertung von Kraftwerken, Projekten und el. Netzen mit der discounted cash-flow Methode und Anwendung von Realoptionen Strategische Positionierung: Erarbeiten von verschiedenen Fällen (mini cases) Kapazitätsmärkte und Quotensysteme Anwendungen von Derivaten: komplexe Energielieferverträge mit Optionalitäten, flexible Produkte für Stromkunden Quantifizieren des Gegenparteirisikos Marketing des Produktes "Elektrizität" | |||||
Skript | Handouts - all material in English | |||||
Voraussetzungen / Besonderes | 2-tägige Exkursion, Referate von Vertretern aus der Wirtschaft Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=12225 | |||||
363-0514-00L | Energy Economics and Policy It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example,"Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | W | 3 KP | 2G | M. Filippini, S. Srinivasan | |
Kurzbeschreibung | An introduction to energy economics and policy that covers the following topics: energy demand, investment in energy efficiency, investment in renewables, energy markets, market failures and behavioral anomalies, market-based and non-market based energy and climate policy instruments in industrialized and developing countries. | |||||
Lernziel | The students will develop an understanding of economic principles and tools necessary to analyze energy issues and to understand energy and climate policy instruments. Emphasis will be put on empirical analysis of energy demand and supply, market failures, behavioral anomalies, energy and climate policy instruments in industrialized and developing countries, and investments in renewables and in energy-efficient technologies. | |||||
Inhalt | The course provides an introduction to energy economics principles and policy applications. The first part of the course will introduce the microeconomic foundation of energy demand and supply as well as market failures and behavioral anomalies. In a second part, we introduce the concept of investment analysis (such as the NPV) in the context of renewable and energy-efficient technologies. In the last part, we use the previously introduced concepts to analyze energy policies: from a government perspective, we discuss the mechanisms and implications of market oriented and non-market oriented policy instruments as well as applications in developing countries. Throughout the entire course, we combine the material with insights from current research in energy economics. This combination will enable students to understand standard scientific literature in the field of energy economics and policy. Moreover, the class aims to show students how to relate current issues in the energy and climate spheres that influence industrialized and developing countries to insights from energy economics and policy. Course evaluation: at the end of the course, there will be a written exam covering the topics of the course. | |||||
Voraussetzungen / Besonderes | It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example, "Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | |||||
529-0191-01L | Electrochemical Energy Conversion and Storage Technologies | W | 4 KP | 3G | L. Gubler, E. Fabbri, J. Herranz Salañer | |
Kurzbeschreibung | The course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system. | |||||
Lernziel | Students will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated. | |||||
Inhalt | Overview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis. | |||||
Skript | all lecture materials will be available for download on the course website. | |||||
Literatur | Textbook recommendations for advanced studies on the topics of the course: - M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019). - C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007). - T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018) | |||||
Voraussetzungen / Besonderes | Basic physical chemistry background required, prior knowledge of electrochemistry basics desired. |
- Seite 1 von 1