Suchergebnis: Katalogdaten im Frühjahrssemester 2022

Physik Master Information
Kernfächer
Ein experimentelles oder theoretisches Bachelorkernfach kann als Masterkernfach angerechnet werden, allerdings kann dieses nicht benutzt werden, um das obligatorische experimentelle oder theoretische Kernfach im Master zu kompensieren.
Für die Kategoriezuordnung lassen Sie bei der Prüfungsanmeldung "keine Kategorie" ausgewählt und wenden Sie sich nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.phys.ethz.ch/de/studium/studiensekretariat.html).
Theoretische Kernfächer
NummerTitelTypECTSUmfangDozierende
402-0871-00LSolid State Theory
Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das Modul PHY411 direkt an der UZH buchen.
W10 KP4V + 1UE. Demler
KurzbeschreibungDiese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik.
LernzielZiel der Vorlesung ist die Entwicklung eines theoretischen Rahmens zum Verständnis grundlegender Phänomene der Festkörperphysik. Dazu gehören Symmetrien, Bandstrukturen, Teilchen-Teilchen Wechselwirkung, Landau Fermi-Flüssigkeiten, sowie spezifische Themen wie Transport, Quanten-Hall-Effekt und Magnetismus. Die Übungen unterstützen und illustrieren die Vorlesung durch handwerkliches Lösen spezifischer Probleme. Der Student versteht grundlegende theoretische Konzepte der Festkörperphysik und kann Probleme selbständig lösen. Es werden keine diagrammatischen Techniken verwendet.
InhaltDiese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik. Es werden folgende Themen abgedeckt: Symmetrien und Gruppentheorie, Elektronenstruktur in Kristallen, Isolatoren-Halbleiter-Metalle, Phononen, Wechselwirkungseffekte, (un-)geladene Fermi-Flüssigkeiten, lineare Antworttheorie, kollektive Moden, Abschirmung, Transport in Halbleitern und Metallen, Magnetismus, Mott-Isolatoren, Quanten-Hall-Effekt.
Skriptin Englisch
402-0844-00LQuantum Field Theory II
Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das entsprechende Modul direkt an der UZH buchen.
W10 KP3V + 2UA. Lazopoulos
KurzbeschreibungThe subject of the course is modern applications of quantum field theory with emphasis on the quantization of non-abelian gauge theories.
LernzielThe goal of this course is to lay down the path integral formulation of quantum field theories and in particular to provide a solid basis for the study of non-abelian gauge theories and of the Standard Model
InhaltThe following topics will be covered:
- path integral quantization
- non-abelian gauge theories and their quantization
- systematics of renormalization, including BRST symmetries, Slavnov-Taylor Identities and the Callan-Symanzik equation
- the Goldstone theorem and the Higgs mechanism
- gauge theories with spontaneous symmetry breaking and their quantization
- renormalization of spontaneously broken gauge theories and quantum effective actions
LiteraturM.E. Peskin and D.V. Schroeder, "An introduction to Quantum Field Theory", Perseus (1995).
S. Pokorski, "Gauge Field Theories" (2nd Edition), Cambridge Univ. Press (2000)
P. Ramond, "Field Theory: A Modern Primer" (2nd Edition), Westview Press (1990)
S. Weinberg, "The Quantum Theory of Fields" (Volume 2), CUP (1996).
402-0394-00LTheoretical Cosmology
In 2022 the lectures will be held separately from UZH. A different class under the same name will be taught by a different lecturer at UZH.
W10 KP4V + 2UL. Senatore
KurzbeschreibungThis is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe.
LernzielLearning the fundamentals of modern physical cosmology. This
entails understanding the physical principles behind the description
of the homogeneous Universe on large scales in the first part of the
course, and moving on to the inhomogeneous Universe model where
perturbation theory is used to study the development of structure
through gravitational instability in the second part of the course.
Modern notions of dark matter and dark energy will also be introduced and discussed.
InhaltThe course will cover the following topics:
- Homogeneous cosmology
- Thermal history of the universe, recombination, baryogenesis and nucleosynthesis
- Dark matter and Dark Energy
- Inflation
- Perturbation theory: Relativistic and Newtonian
- Model of structure formation and initial conditions from Inflation
- Cosmic microwave background anisotropies
- Spherical collapse and galaxy formation
- Large scale structure and cosmological probes
SkriptIn 2021, the lectures will be live-streamed online at ETH from the Room HPV G5 at the lecture hours. The recordings will be available at the ETH website. The detailed information will be provided by the course website and the SLACK channel.
LiteraturSuggested textbooks:
H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution
S. Carroll: Space-Time and Geometry: An Introduction to General Relativity
S. Dodelson: Modern Cosmology
Secondary textbooks:
S. Weinberg: Gravitation and Cosmology
V. Mukhanov: Physical Foundations of Cosmology
E. W. Kolb and M. S. Turner: The Early Universe
N. Straumann: General relativity with applications to astrophysics
A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure
Voraussetzungen / BesonderesKnowledge of General Relativity is recommended.
  •  Seite  1  von  1