Search result: Catalogue data in Autumn Semester 2021

Civil Engineering Master Information
Master Studies (Programme Regulations 2020)
1. Semester
Major Courses
Major in Structural Engineering
NumberTitleTypeECTSHoursLecturers
101-0117-00LTheory of Structures IIIO3 credits2GB. Stojadinovic
AbstractThis course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting.
ObjectiveAfter passing this course students will be able to:
1. Explain the equilibrium of continuous structural elements.
2. Formulate mechanical models of continuous prismatic structural elements.
3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements.
4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading.
5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions.
ContentThis is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures.
Lecture notesElectronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are streamed live and recorded on the ETH Video Portal.
LiteratureMarti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014

Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993.
Prerequisites / NoticeWorking knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
101-0127-00LAdvanced Structural Concrete Information O3 credits2GJ. Mata Falcón, W. Kaufmann
AbstractThis course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation.
ObjectiveEnhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software.
ContentFundamentals (structural analysis, theorems of limit analysis, applicability of limit analysis methods); shear walls and girders (stress fields and truss models, deformation capacity, membrane elements with yield conditions and load-deformation behaviour, computer-aided structural design); slabs (equilibrium solutions, yield conditions, shear and punching shear); fibre reinforced concrete (mechanical behaviour, applications); long term effects; fire behaviour.
Lecture notesLecture notes see: Link
LiteratureDeutsche Literatur:
Marti, P., Alvarez, M., Kaufmann, W. und Sigrist, V., "Tragverhalten von Stahlbeton", IBK Publikation SP-008, Sept. 1999, 301 pp.
Muttoni, A., Schwartz, J. und Thürlimann, B.,: "Bemessung von Betontragwerken mit Spannungsfeldern", Birkhäuser Verlag, Basel, 1997, 145 pp.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Sensitivity to Diversityfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
101-0137-00LSteel Structures III: Advanced Steel and Composite StructuresO3 credits2GA. Taras, U. Angst
AbstractExpand the theoretical background and practical knowledge in the design of steel and composite structures. Special composite construction and detailling: partial connection, serviceability. Fire design. Cold-formed steel design. Crane girders; masts; tanks & silos. Structural glazing and lightweight cable-supported structures.
ObjectiveIn Steel Structures III, students will deepen and expand their theoretical background and practical knowledge of the design and construction of steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. Students will learn how to solve complex structural engineering tasks in larger building projects, e.g. through the use and correct design of large-span slim-floor girders and ultra-slender composite columns, or the use of glazing and cable structures as principal load-carrying components. They learn how steel structures behave under fire conditions and how they can be protected and designed accordingly. Finally, students learn about the fundamental aspects governing the design of specialty steel structures, such as thin-walled cold-formed sections, crane girders, masts and storage tanks.

The examples of scientific and standardisation work provided in the lectures give the students the opportunity to learn about the most current developments and see how these are used to shape the future practice in the structural engineering field.
ContentSteel Structures III provides in-depth theoretical background and practical knowledge on advanced design topics in steel and composite structures. The focus of the course lies on design tasks and solutions in modern, multi-storey, steel-framed buildings driven by architectural needs, as well as on certain special fields of application of steel structures. The course discusses the use and design of large-span slim-floor girders and ultra-slender composite columns, as well as the use of glazing and cable structures as principal load-carrying components. The design of steel structures under elevated temperatures (fire conditions) is treated, as well as special topics of design for serviceability. In addition, fundamental concepts of the design of cold-formed steel framed structures are discussed. Finally, the course will give an overview on the design of specialty steel structures, such as crane girders, masts and storage tanks.
Lecture notesSlides and lecture notes. Worked examples. Handouts and formula collections.
LiteratureStahlbaukalender (various editions), Ernst + Sohn, Berlin
Prerequisites / NoticePrerequisites: Steel Structures I and II
101-0187-00LStructural Reliability and Risk AnalysisW3 credits2GS. Marelli
AbstractStructural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.
ObjectiveThe goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.
ContentEngineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
Lecture notesSlides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.
LiteratureAng, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Prerequisites / NoticeBasic course on probability theory and statistics
101-0157-01LStructural Dynamics and Vibration ProblemsW3 credits2GM. Vassiliou, V. Ntertimanis
AbstractFundamentals of structural dynamics are presented. Computing the response of elastic single and multiple DOF structural systems subjected to harmonic, periodic, pulse, and impulse is discussed. Practical solutions to vibration problems in flexible structures under diverse excitations are developed.
ObjectiveAfter successful completion of this course the students will be able to:
1. Explain the dynamic equilibrium of structures under dynamic loading.
2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems.
3. Model structural systems using single-degree-of-freedom and multiple-degree-of-freedom models.
4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods.
5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading.
ContentThis is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented.
Lecture notesThe class will be taught mainly on the blackboard.

Accompanying electronic material will be uploaded to ILIAS and available through myStudies.

All the material can be found in Anil Chopra's comprehensive textbook given in the literature below.
LiteratureDynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 (Global Edition), ISBN-10: 9780273774242

Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995

Weber B., Tragwerksdynamik. Link .ETH Zürich, 2002.
Prerequisites / NoticeKnowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable.
151-8015-00LMoisture Transport in Porous Media Information W3 credits2GJ. Carmeliet, L. Fei, J. Huang, J. Zhao
AbstractMoisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media.
Objective- Basic knowledge of moisture transport and related degradation processes in porous materials
- Knowledge of experimental determination of moisture transport properties
- Knowledge of pore network model and application to two-phase invasion percolation simulation
- Application of knowledge to moisture transport in cracked materials and flow in deformable porous media
Content1. Introduction
Moisture damage: problem statement, durability
Applications: building materials, soil science, geoscience

2. Moisture transport: theory and application
Description of moisture transport
Determination of moisture transport properties
Liquid transport in cracked materials, flow and transport in deformable porous media

3. Pore network model: theory and application
Single- and two-phase pore network model: quasi-static and dynamic
Exercise on quasi-static two-phase pore network model: invasion pattern, capillary pressure curve
Application of pore network model in two-phase transport
Lecture notesHandouts, supporting material and exercises are provided online via Moodle.
LiteratureAll material is provided online via Moodle.
101-0167-01LFibre Composite Materials in Structural EngineeringW3 credits2GM. Motavalli
Abstract1) Lamina and Laminate Theory
2) FRP Manufacturing and Testing Methods
3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures
4) FRP Reinforced Concrete, All FRP Structures
5) Measurement Techniques and Structural Health Monitoring
ObjectiveAt the end of the course, you shall be able to

1) Design advanced FRP composites for your structures,

2) To consult owners and clients with necessray testing and SHM techniques for FRP structures,

3) Continue your education as a phd student in this field.
ContentFibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure.
Lecture notesPower Point Presentations available online at Link
Literature1) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994

2) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7

3) fib bulletin 19, Externally applied FRP reinforcement for concrete structures, technical report, 2019

4) SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und Architektenverein SIA.
Prerequisites / Notice1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including FRP Composites, Shape Memory Alloys, Timber Elements, Large Scale Testing of Structural Components
2) Working with Composite Materials in the Laboratory (application, testing, etc)
101-0637-01LTimber Structures I
Remark: Students in Civil Engineering must enrol this course as a year course Timber Structures I+II.
W3 credits2GA. Frangi, I. Burgert, G. Fink, R. Steiger
AbstractConceptual design, detailing and structural analysis of multi-storey timber buildings as well as timber roof structures and halls.
ObjectiveComprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing.
Conceptual design, detailing and structural analysis of multi-storey timber buildings as well as timber roof structures and halls.
ContentField of application of timber structures; Timber as building material (wood structure, physical and mechanical properties of wood and wood-based products); Durability; Principles of design and dimensioning; Connections (dowels, nails, screws, glued connections); Timber components and assemblies (mechanically jointed beams, trusses); Design and detaling of multi-storey timber buildings as well as timber roof structures and halls.
Lecture notesAutography Timber Structures
Copies of lecture slides
LiteratureTimber design tables HBT 1, Lignum
Swiss Standard SIA 265
Swiss Standard SIA 265/1
Eurocode 5
052-0609-00LEnergy and Climate Systems I Information W2 credits2GA. Schlüter
AbstractThe first semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable heating, cooling and ventilation of buildings on different scales and the interaction of technical systems with architectural and urban design.
ObjectiveThe lecture series focuses on the physical principles and technical components of relevant systems for an efficient and sustainable climatisation and energy supply of buildings. A special focus is on the interrelation of supply systems and architectural design and construction. Learning and practicing methods of quantifying demand and supply allows identifying parameters relevant for design.
Content1. Introduction and overview
2. Heating and cooling systems in buildings
3. Ventilation
Lecture notesThe slides of the lecture serve as lecture notes and are available as download.
LiteratureA list of relevant literature is available at the chair.
101-0617-02LComputational Science Investigation for Material MechanicsW4 credits2SD. Kammer, F. Wittel
AbstractIntroduction to computational sciences with focus on numerical modeling of the mechanics of materials. Simulation of material damage and failure with advanced finite element methods.
ObjectiveLearning from mistakes and failures is as old as the engineering discipline. Understanding why things went wrong is essential for improvement, but often impossible without the help of numerical modelling. Real world problems are often highly nonlinear, dependent on multiple physical fields, involve fundamental material behavior far from equilibrium and reversibility, and can often only be understood by addressing different relevant scales.

In this course, we will use real-life cases to learn how to deal with such problems. Starting from the problem description with governing equations, you will learn how to tackle non-linear and multi-field problems using numerical simulations. A particular focus will be on fracture. Starting from the failed state, we will investigate potential causes and find the conditions that resulted in failure. For doing so, you will learn how to predict it with the Finite Element Method (FEM). To correctly assess failure, plastic behavior and size effects, originating from the underlying material microstructure, need to be considered. You will learn how to deal with plasticity in FEM and how you can get information from the heterogeneous material scale into your FEM framework.
Content1 Introduction to (numeric) forensic engineering
2 The nature of engineering problems (governing equations)
3 Numerical recipes for dealing with non-linear problems
4 Multi-field problems (HTM; Comsol)
5 On the nature of failure - Physics of damage and fracture
6 Cracks and growth in structures (LEFM and beyond)
7 A practical approach to LEFM with FEM (Abaqus)
8 Introduction to metal plasticity
9 Damage and fracture in heterogeneous materials
10 Mechanics of fatigue
11 Visco-elastic failure
12 Student μ-Project presentation
Lecture notesWill be provided during the lecture via moodle.
LiteratureWill be provided during the lecture.
  •  Page  1  of  1