Search result: Catalogue data in Autumn Semester 2021

Computer Science Master Information
Master Studies (Programme Regulations 2020)
Minors
Minor in Data Management
NumberTitleTypeECTSHoursLecturers
252-0535-00LAdvanced Machine Learning Information W10 credits3V + 2U + 4AJ. M. Buhmann, C. Cotrini Jimenez
AbstractMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
ObjectiveStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
ContentThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
Lecture notesNo lecture notes, but slides will be made available on the course webpage.
LiteratureC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Prerequisites / NoticeThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
263-2800-00LDesign of Parallel and High-Performance Computing Information Restricted registration - show details
Number of participants limited to 125.
W9 credits3V + 2U + 3AT. Hoefler, M. Püschel
AbstractAdvanced topics in parallel and high-performance computing.
ObjectiveUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
ContentWe will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms.
Prerequisites / NoticeThis class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses.
263-3010-00LBig Data Information Restricted registration - show details W10 credits3V + 2U + 4AG. Fourny
AbstractThe key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.
ObjectiveThis combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
ContentThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores

- logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP)

- data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro)

- data shapes and models (tables, trees, graphs, cubes)

- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)

- an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX)

- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)

- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)

- resource management (YARN)

- what a data center is made of and why it matters (racks, nodes, ...)

- underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j)

- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)

- applications.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturePapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Prerequisites / NoticeThis course, in the autumn semester, is only intended for:
- Computer Science students
- Data Science students
- CBB students with a Computer Science background

Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added.

For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you:
- "Information Systems for Engineers" (SQL, relational databases): this Fall
- "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021
There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers.

Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data.
263-3210-00LDeep Learning Information Restricted registration - show details
Number of participants limited to 320.
W8 credits3V + 2U + 2AF. Perez Cruz, A. Lucchi
AbstractDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
ObjectiveIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Prerequisites / NoticeThis is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Advanced Machine Learning
Link

Computational Intelligence Lab
Link

Introduction to Machine Learning
Link

Statistical Learning Theory
Link

Computational Statistics
Link

Probabilistic Artificial Intelligence
Link
263-3845-00LData Management Systems Information W8 credits3V + 1U + 3AG. Alonso
AbstractThe course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud.
ObjectiveThe goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms.
ContentThe course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understating these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc.
LiteratureThe main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course.
Prerequisites / NoticeThe course requires to have completed the Data Modeling and Data Bases course at the Bachelor level as it assumes knowledge of databases and SQL.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
263-3850-00LInformal Methods Information W5 credits2G + 2AD. Cock
AbstractFormal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code.
ObjectiveThis course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and thereby enabling them to become better systems programmers.
By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems.

The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work.
ContentThis course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch.

Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one).
  •  Page  1  of  1