Search result: Catalogue data in Autumn Semester 2021
Computational Science and Engineering Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-7851-00L | Theoretical Astrophysics (University of Zurich) ![]() No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: AST512 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 10 credits | 4V + 2U | University lecturers | |
Abstract | This course covers the foundations of astrophysical fluid dynamics, the Boltzmann equation, equilibrium systems and their stability, the structure of stars, astrophysical turbulence, accretion disks and their stability, the foundations of radiative transfer, collisionless systems, the structure and stability of dark matter halos and stellar galactic disks. | |||||
Objective | ||||||
Content | This course covers the foundations of astrophysical fluid dynamics, the theory of collisions and the Boltzmann equation, the notion of equilibrium systems and their stability, the structure of stars, the theory of astrophysical turbulence, the theory of accretion disks and their stability, the foundations of astrophysical radiative transfer, the theory of collisionless system, the structure and stability of dark matter halos and stellar galactic disks. | |||||
Literature | Course Materials: 1- The Physics of Astrophysics, Volume 1: Radiation by Frank H. Shu 2- The Physics of Astrophysics, Volume 2: Gas Dynamics by Frank H. Shu 3- Foundations of radiation hydrodynamics, Dimitri Mihalas and Barbara Weibel-Mihalas 4- Radiative Processes in Astrophysics, George B. Rybicki and Alan P. Lightman 5- Galactic Dynamics, James Binney and Scott Tremaine | |||||
Prerequisites / Notice | This is a full black board ad chalk experience for students with a strong background in mathematics and physics. Prerequisites: Introduction to Astrophysics Mathematical Methods for the Physicist Quantum Mechanics (All preferred but not obligatory) Prior Knowledge: Mechanics Quantum Mechanics and atomic physics Thermodynamics Fluid Dynamics Electrodynamics | |||||
401-7855-00L | Computational Astrophysics (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: AST245 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 2V | L. M. Mayer | |
Abstract | ||||||
Objective | Acquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes | |||||
Content | 1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility 2. Large-N gravity calculation, collisionless N-body systems and their simulation 3. Fast Fourier Transform and spectral methods in general 4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters 5. Lagrangian Hydrodynamics: The SPH method 6. Resolution and instabilities in Hydrodynamics 7. Initial Conditions: Cosmological Simulations and Astrophysical Disks 8. Physical Approximations and Methods for Radiative Transfer in Astrophysics | |||||
Literature | Galactic Dynamics (Binney & Tremaine, Princeton University Press), Computer Simulation using Particles (Hockney & Eastwood CRC press), Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh) | |||||
Prerequisites / Notice | Some knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial |
Page 1 of 1