Search result: Catalogue data in Autumn Semester 2021
Food Science Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major in Food Quality and Safety | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Methodology Subjects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0625-01L | Applied Analysis of Variance and Experimental Design | W+ | 5 credits | 2V + 1U | L. Meier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0649-00L | Applied Statistical Regression | W+ | 5 credits | 2V + 1U | M. Dettling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies. The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Faraway (2005): Linear Models with R Faraway (2006): Extending the Linear Model with R Draper & Smith (1998): Applied Regression Analysis Fox (2008): Applied Regression Analysis and GLMs Montgomery et al. (2006): Introduction to Linear Regression Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held. In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
752-5500-00L | Applied Bioinformatics: Microbiomes | W+ | 4 credits | 2G | N. Bokulich | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Learn to apply practical bioinformatics/computational skills for analysis of microbiomes in foods and human health! Students will apply basic programming skills for scientific computing and bioinformatics, and learn and discuss the importance of microbiomes to foods and human health, through recognition and comparison of ecological theory, methodology, and experimental design across systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Learn to apply bioinformatics and computational methods for analysis of microbiome next-generation sequencing data. A secondary goal is to critically examine the relevance of microbiomes to food quality, safety, and human health, through application of theory and appropriate experimental design. Students completing this course will thus be able to both apply appropriate methodology to study microbiomes (or other high-dimensional data) in different systems, as well as evaluate and interpret bioinformatics results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction to microbiomes and microbial bioinformatics toolkit. UNIX/bash, Python, Pandas, Jupyter, git/GitHub, visualization libraries for Python. 2. Analysis of marker-gene sequence data for microbiome profiling. QIIME 2, database searching, taxonomic classification, phylogenetics. 3. Microbial diversity, function, and ecology. Molecular ecology, diversity metrics, ordination methods. 4. Advanced topics in microbial bioinformatics. Metagenomics, machine learning, functional analysis, data visualization, et cetera. This course requires extensive engagement in learning outside of the classroom (using online resources and practical exercises), with a focus on active learning in the classroom. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific pre-requisites, but students should have some familiarity with microbiology, molecular biology, programming (UNIX/bash and/or Python), bioinformatics, and statistics. Students will bring and work on their own laptop computers (students without a laptop should consult with their department’s ISG group). All software used in the course is free and open-source. Installation instructions will be provided to students prior to the start of the course. |
- Page 1 of 1