Search result: Catalogue data in Autumn Semester 2021

Physics TC Information
Detailed information on the programme at: www.didaktischeausbildung.ethz.ch
Specialized Courses in Respective Subject with Educational Focus
NumberTitleTypeECTSHoursLecturers
402-0737-00LEnergy and Sustainability in the 21st Century (Part I)W6 credits2V + 1UP. Morf
Abstract
Learning objectiveWhy is energy important for life and our society?
How did energy use change over time? Which effects did these changes have on the environment?
What are the physical basics of energy technologies?
When, why and how did technology and science of energy come together?
What are the limits and benefits of all the various energy technologies?
How can different energy technologies be compared?
Can we understand the changes in the current energy systems?
How will the energy systems of the future look like?
How fast can we and should we alter the current energy transition?
Which could be the overall guide lines for a working energy system of the future?
ContentPhysical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems.
Energy and making use of it - a short history and overview on energy technologies
Coal, oil and natural gas – fossil fuels
Hydro, Wind- & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy
Nuclear power, radioactivity and ultimate storage – the quest for a safe technology
Breeding and Nuclear Fusion – can it work at all?
Energy storage – available technologies and a technology outlook
Climate change, decarbonisation – how much time do we have?
Energy efficiency, recycling and other resource conservation measures
Energy systems – how everything can play together
Buildings and Mobility – new technologies, new Ways of life?
Life cycle assessment of Energy Technologies – problems and possibilities
Economics of energy, learning curves, technology assessments and Innovation.
The energy transition and decarbonisation – How is your 2040, 2050?
Lecture notesWeb page:
http://ihp-lx2.ethz.ch/energy21/index.html
LiteratureThe Physics of Energy, R.L. Jaffe, W. Taylor, 2018
Clean Disruption of Energy and Transportation, T. Seba 2014
Energy and Civilization: A History, V. Smil, 2018
Renewable Energy – Without the Hot Air, D.J.c. Mackay 2009
Prerequisites / NoticeBasics of Physics applied to Energy and Energy Technology.
Investigation on current problems (and possible solutions)
related to the energy system and the environmental interactions.
Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions.
402-0922-00LMentored Work Specialised Courses in Physics with an Educational Focus A Information Restricted registration - show details
Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Physics for TC and Teaching Diploma.
O2 credits4AG. Schiltz, A. Vaterlaus
AbstractIn the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level.
Learning objectivePractice in the explanation of complex topics in physics as the core competence of the teaching profession

Improvement of the physics education by providing attractive recent topics with regard to future curricular decisions and the public view of physics
ContentChoice of topic by individual arrangement
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
402-0505-00LPhysics in the Smartphone
Does not take place this semester.
W6 credits3GM. Sigrist
AbstractPhysics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore's law, meta-materials for antennas, MEMS sensor physics, etc.
Learning objectiveStudents recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us.

Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills.
ContentWe explore how traditional and new physics concepts and achievements make their way into today's ubiquitous high-tech gadget : the smartphone.
Examples of topics include:
network topology and scratch proof Gorilla glass,
spin-orbit coupling makes for four times brighter displays,
no GPS without general theory of relativity,
electromagnetic response of matter (transparent metals for displays, GPS signal propagation in the atmosphere),
lightfield cameras replacing CCD and CMOS light sensors,
physical limitations to IC scaling: the end of "Moore's law",
meta-materials for antennas,
physics of the various MEMS sensors,
etc., etc.,
Lecture notesThe presentation material and original literature will be distributed weekly.
Prerequisites / NoticeBasic physics lectures and introduction to solid state physics are expected.

This is a "3 hour" course, with two hours set for <tba>, and the third one to be set at the beginning of the semester.

An introductory event is planed in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT K51. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics.
402-0247-00LElectronics for Physicists I (Analogue) Restricted registration - show details
Number of participants limited to 40.
W4 credits2V + 2PG. Bison, W. Erdmann
AbstractPassive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability, oscillators, ADCs and DACs, introduction to CMOS technology
Learning objectiveThe lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the concepts can be experienced in a hands-on manner. Every student has the opportunity to go through all steps of an electronic design cycle. Those include designing schematics, generating a printed circuit board layout, and the realization of a soldered prototype.
ContentPassive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and fieldeffect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADC's and DAC's, introduction in CMOS technology.
Practical excercises in small groups to the above themes complement the lectures.
Prerequisites / Noticeno prior knowledge in electronics is required
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesProblem-solvingfostered
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
  •  Page  1  of  1