Search result: Catalogue data in Autumn Semester 2021
Physics TC Detailed information on the programme at: www.didaktischeausbildung.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specialized Courses in Respective Subject with Educational Focus | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0737-00L | Energy and Sustainability in the 21st Century (Part I) | W | 6 credits | 2V + 1U | P. Morf | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Why is energy important for life and our society? How did energy use change over time? Which effects did these changes have on the environment? What are the physical basics of energy technologies? When, why and how did technology and science of energy come together? What are the limits and benefits of all the various energy technologies? How can different energy technologies be compared? Can we understand the changes in the current energy systems? How will the energy systems of the future look like? How fast can we and should we alter the current energy transition? Which could be the overall guide lines for a working energy system of the future? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Physical basics of energy, thermodynamics and life. Introduction to self-organisation, and systems. Energy and making use of it - a short history and overview on energy technologies Coal, oil and natural gas – fossil fuels Hydro, Wind- & Solarpower (Geothermal- and Tidal power) – the quest for renewable energy Nuclear power, radioactivity and ultimate storage – the quest for a safe technology Breeding and Nuclear Fusion – can it work at all? Energy storage – available technologies and a technology outlook Climate change, decarbonisation – how much time do we have? Energy efficiency, recycling and other resource conservation measures Energy systems – how everything can play together Buildings and Mobility – new technologies, new Ways of life? Life cycle assessment of Energy Technologies – problems and possibilities Economics of energy, learning curves, technology assessments and Innovation. The energy transition and decarbonisation – How is your 2040, 2050? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Web page: http://ihp-lx2.ethz.ch/energy21/index.html | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The Physics of Energy, R.L. Jaffe, W. Taylor, 2018 Clean Disruption of Energy and Transportation, T. Seba 2014 Energy and Civilization: A History, V. Smil, 2018 Renewable Energy – Without the Hot Air, D.J.c. Mackay 2009 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basics of Physics applied to Energy and Energy Technology. Investigation on current problems (and possible solutions) related to the energy system and the environmental interactions. Training of scientific and multi-disciplinary methods, approaches and their limits in the exercises and discussions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0922-00L | Mentored Work Specialised Courses in Physics with an Educational Focus A Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Physics for TC and Teaching Diploma. | O | 2 credits | 4A | G. Schiltz, A. Vaterlaus | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Practice in the explanation of complex topics in physics as the core competence of the teaching profession Improvement of the physics education by providing attractive recent topics with regard to future curricular decisions and the public view of physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Choice of topic by individual arrangement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0505-00L | Physics in the Smartphone Does not take place this semester. | W | 6 credits | 3G | M. Sigrist | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Physics in today's high-tech smartphone. Examples: network topology and scratch proof glass, spin-orbit coupling - brighter displays, GPS and general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation), light-field cameras, CCD and CMOS light sensors, physics stops Moore's law, meta-materials for antennas, MEMS sensor physics, etc. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students recognize and appreciate the enormous impact "physics" has on today's high tech world. Abstract concepts, old and recent, encountered in the lectures are implemented and present all around us. Students are actively involved in the preparation and presentation of the topics, and thus acquire valuable professional skills. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | We explore how traditional and new physics concepts and achievements make their way into today's ubiquitous high-tech gadget : the smartphone. Examples of topics include: network topology and scratch proof Gorilla glass, spin-orbit coupling makes for four times brighter displays, no GPS without general theory of relativity, electromagnetic response of matter (transparent metals for displays, GPS signal propagation in the atmosphere), lightfield cameras replacing CCD and CMOS light sensors, physical limitations to IC scaling: the end of "Moore's law", meta-materials for antennas, physics of the various MEMS sensors, etc., etc., | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The presentation material and original literature will be distributed weekly. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic physics lectures and introduction to solid state physics are expected. This is a "3 hour" course, with two hours set for <tba>, and the third one to be set at the beginning of the semester. An introductory event is planed in the first week of the term on Wednesday, September 19th - 17:45 in the room HIT K51. In this meeting we will fix the time of the usual lecture and we will distribute the topics for the presentations during the term. The tutors will briefly present each topics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0247-00L | Electronics for Physicists I (Analogue) Number of participants limited to 40. | W | 4 credits | 2V + 2P | G. Bison, W. Erdmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Passive components, linear networks, transmission lines, simulation of analog circuits, semiconductor components: diodes, bipolar and field-effect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise, operational amplifiers, feedback and stability, oscillators, ADCs and DACs, introduction to CMOS technology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The lecture provides the basic knowledge necessary to understand, design and simulate analog electronic circuits. In the exercises, the concepts can be experienced in a hands-on manner. Every student has the opportunity to go through all steps of an electronic design cycle. Those include designing schematics, generating a printed circuit board layout, and the realization of a soldered prototype. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Passive elements, linear complex networks, transmission lines, simulation of analog circuits (SPICE), semiconductor elements: diodes, bipolar and fieldeffect transistors, basic amplifier circuits, small signal analysis, differential amplifiers, noise in analog circuits, operational amplifiers, feedback and stability in amplifiers, oscillators, ADC's and DAC's, introduction in CMOS technology. Practical excercises in small groups to the above themes complement the lectures. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | no prior knowledge in electronics is required | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
|
- Page 1 of 1