Search result: Catalogue data in Autumn Semester 2021

Interdisciplinary Sciences Bachelor Information
Physical-Chemical Direction
1. Semester (Physical-Chemical Direction)
Compulsory Subjects First Year Examinations
NumberTitleTypeECTSHoursLecturers
401-1261-07LAnalysis I: One Variable Information O10 credits6V + 3UM. Einsiedler
AbstractIntroduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.
ObjectiveThe ability to work with the basics of calculus in a mathematically rigorous way.
LiteratureH. Amann, J. Escher: Analysis I
Link

J. Appell: Analysis in Beispielen und Gegenbeispielen
Link

R. Courant: Vorlesungen über Differential- und Integralrechnung
Link

O. Forster: Analysis 1
Link

H. Heuser: Lehrbuch der Analysis
Link

K. Königsberger: Analysis 1
Link

W. Walter: Analysis 1
Link

V. Zorich: Mathematical Analysis I (englisch)
Link

A. Beutelspacher: "Das ist o.B.d.A. trivial"
Link

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
Link
401-1151-00LLinear Algebra I Information O7 credits4V + 2UR. Pink
AbstractIntroduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors.
Objective- Mastering basic concepts of Linear Algebra
- Introduction to mathematical methods
Content- Basics
- Vectorspaces and linear maps
- Systems of linear equations and matrices
- Determinants
- Endomorphisms and eigenvalues
LiteratureWe publish a summary of the content of the lecture course on the homepage: Link
Besides this we recommend one textbook about Linear Algebra, for instance one of these:
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: Link
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: Link
- H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: Link
- S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link
In addition we recommend this general introduction into studying mathematics:
- H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: Link
402-1701-00LPhysics IO7 credits4V + 2UK. Ensslin
AbstractThis course gives a first introduction to Physics with an emphasis on classical mechanics.
ObjectiveAcquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.
529-0011-01LGeneral Chemistry (Physical Chemistry) IO3 credits2V + 1UH. J. Wörner
AbstractDie Vorlesung vermittelt eine Einführung in einige physikalischen Grundlagen der Chemie, insbesondere in die Radioaktivität, die Quantenmechanik, den Aufbau der Materie und eines Atoms, des Periodensystems der Elemente und die chemische Bindung.
ObjectiveDie Studierenden sind nach der Vorlesung in der Lage,
- mit für die Chemie wichtigen physikalischen Grössen und deren Einheiten zu rechnen,
- einige Eigenschaften chemisch relevanter Teilchen zu benennen und experimentelle Methoden zur Bestimmung dieser Eigenschaften vorzuschlagen,
- Anwendungen und Gefahren der Radioaktivität zu benennen,
- radioaktive Zerfallsprozesse zu kategorisieren und den zeitlichen Verlauf von einfachen Zerfallsreaktionen mathematisch wiederzugeben sowie qualitativ vorherzusagen und darzustellen,
- Wellen- und Teilcheneigenschaften von elektromagnetischer Strahlung und Materie zu beschreiben und experimentelle Methoden zu deren Nachweis vorzuschlagen,
- die Grundlagen der Quantenmechanik (Bedeutung der Wellenfunktion, Heisenberg'sche Unschärferelation, Operatoren, Kommutatoren) zu erklären und einfache Rechnungen damit auszuführen,
- Absorptions- und Emissionsspektren von Einelektronenatomen zu analysieren und zu berechnen,
- die Schrödingergleichung für ein molekulares Mehrteilchensystem aufzustellen,
- die Schrödingergleichung für die Modellsysteme Teilchen im Kasten und harmonischer Oszillator in einer Dimension selbstständig zu lösen und auf höherdimensionale nicht-wechselwirkende Probleme zu verallgemeinern,
- Molekülschwingungen von zweiatomigen Molekülen mit dem Modell des harmonischen und des anharmonischen Oszillators zu modellieren,
- das Konzept eines Orbitals zu erklären und die qualitative Form der Orbitale des Wasserstoffatoms mathematisch und bildlich wiederzugeben,
- den Aufbau des Periodensystems der Elemente mit Hilfe des Orbitalkonzepts zu erklären,
- Ähnlichkeiten in der elektronischen Struktur von Atomen zu erkennen und zu benutzen, um chemisch relevante Eigenschaften vorherzusagen, und
- Termsymbole für atomare Grundzustände aufzustellen.
ContentAtomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals.
Lecture notesSee homepage of the lecture.
LiteratureSee homepage of the lecture.
Prerequisites / NoticeVoraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Additional First Year Compulsory Subjects
NumberTitleTypeECTSHoursLecturers
529-0011-04LPractical Course General Chemistry Restricted registration - show details
Latest online enrolment is 20.9.2021

Information about the practical course will be given on the first day.
O8 credits12PH. V. Schönberg, E. C. Meister
AbstractQualitative analysis (determination of cations and anions), acid-base-equilibria (pH- values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redoxreactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration).
Analysis of measured data, vapour pressure, conductivity, calorimetry, solubility.
ObjectiveQualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa-values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements), metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration)
analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry, solubility).
ContentThe general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed.
Lecture notesLink
Im Praktikum abgegeben: E. Meister, Praktikum Allgemeine Chemie, Teil Physikalische Chemie, 22. Aufl., 2021, ETH Zürich.
LiteratureMoodle Lernplattform
Prerequisites / NoticeCompulsory: online enrolment latest one week after start of the semester
Safety conceptt: Link
Electives
NumberTitleTypeECTSHoursLecturers
529-0011-02LGeneral Chemistry (Inorganic Chemistry) I Restricted registration - show details W+3 credits2V + 1UA. Togni
AbstractIntroduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions
ObjectiveUnderstanding and describing ionic equilibria from both a qualitative and a quantitative perspective
ContentChemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility
Lecture notesCopies of the course slides as well as other documents will be provided as pdf files via the moodle platform.
LiteratureC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
529-0011-03LGeneral Chemistry (Organic Chemistry) I Information Restricted registration - show details W+3 credits2V + 1UP. Chen
AbstractIntroduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions.
ObjectiveIntroduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry.
ContentIntroduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicity, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromaticity, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions.
Lecture notesUnterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt
LiteratureC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection fostered
Self-direction and Self-management assessed
3. Semester (Physical-Chemical Direction)
Examination Block
NumberTitleTypeECTSHoursLecturers
529-0422-00LPhysical Chemistry II: Chemical Reaction Kinetics Information O4 credits3V + 1UF. Merkt, U. Hollenstein
AbstractIntroduction to Chemical Reaction Kinetics. Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics. Simple chemical reaction rate theories. Reaction mechanisms and complex kinetic systems, chain reactions. Homogeneous catalysis and enzyme kinetics.
ObjectiveIntroduction to Chemical Reaction Kinetics
ContentFundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics. Kinetics of charged particles. Diffusion and diffusion-controlled reactions. Photochemical kinetics. Heterogeneous reactions and heterogeneous catalysis.
Literature- M. Quack und S. Jans-Bürli: Molekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik, VdF, Zürich, 1986.
- G. Wedler: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim, 1982.
Prerequisites / NoticeVoraussetzungen:
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I
402-2883-00LPhysics IIIO7 credits4V + 2UU. Keller
AbstractIntroductory course on quantum and atomic physics including optics and statistical physics.
ObjectiveA basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations.
ContentEinführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen.

Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer.

Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator

Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung

Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas)
Lecture notesIm Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt.
Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt.
LiteratureM. Alonso, E. J. Finn
Quantenphysik und Statistische Physik
R. Oldenbourg Verlag, München
5. Auflage
ISBN 978-3-486-71340-4
Electives
The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at a Bachelor level at ETH Zurich.

In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2018 for further details.
NumberTitleTypeECTSHoursLecturers
252-0847-00LComputer Science Information W5 credits2V + 2UR. Sasse, F. Friedrich Wicker
AbstractThe course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.
ObjectivePrimary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist.
ContentThe course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.
Lecture notesEnglish lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.
LiteratureBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000
401-2303-00LComplex AnalysisW6 credits3V + 2UT. H. Willwacher
AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
ObjectiveWorking knowledge of functions of one complex variables; in particular applications of the residue theorem.
LiteratureB. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010

Th. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethods of Mathematical Physics I Information W6 credits3V + 2UG. Felder
AbstractFourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics.
Objective
402-0205-00LQuantum Mechanics IW10 credits3V + 2UM. Gaberdiel
AbstractGeneral structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture.
Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentThe beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baym, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
402-0255-00LIntroduction to Solid State PhysicsW10 credits3V + 2UC. Degen
AbstractThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.
ObjectiveIntroduction to Solid State Physics.
ContentThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.
Lecture notesThe script will be available on moodle.
LiteratureIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Prerequisites / NoticeVoraussetzungen: Physik I, II, III wünschenswert
402-0263-00LAstrophysics IW10 credits3V + 2US. Lilly
AbstractThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
ObjectiveThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0595-00LSemiconductor NanostructuresW6 credits2V + 1UT. M. Ihn
AbstractThe course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.
ObjectiveAt the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:
1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots
Content1. Introduction and overview
2. Semiconductor crystals: Fabrication and molecular beam epitaxy
3. Band structures of semiconductors
4. k.p-theory, effective mass, envelope functions
5. Heterostructures and band engineering, doping
6. Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport and scattering mechanisms
9. Single- and bilayer graphene
10. Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots
Lecture notesT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteratureIn addition to the lecture notes, the following supplementary books can be recommended:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Prerequisites / NoticeThe lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesassessed
Problem-solvingfostered
Social CompetenciesCommunicationfostered
Self-presentation and Social Influence assessed
Sensitivity to Diversityfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-direction and Self-management fostered
402-2203-01LClassical Mechanics Information W7 credits4V + 2UR. Renner
AbstractA conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.
ObjectiveFundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.
529-0051-00LAnalytical Chemistry IW3 credits3GD. Günther, M.‑O. Ebert, G. Schwarz, R. Zenobi
AbstractIntroduction into the most important spectroscopical methods and their applications to gain structural information.
ObjectiveKnowledge about the necessary theoretical background of spectroscopical methods and their practical applications
ContentApplication oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD).
Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation.
Lecture notesScript will be for the production price
Literature- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Prerequisites / NoticeExcercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended.
529-0121-00LInorganic Chemistry I Information W3 credits2V + 1UH. Grützmacher, P. Steinegger
AbstractDiscussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals as well as the lanthanides and actinides. Introduction of methods of characterization, physical-chemical properties of coordination compounds as well as principles of radiochemistry.
ObjectiveThe students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. The students will acquire knowledge on the fundamentals of radioactive decay and radiochemistry. Furthermore, they will be familiar with the basics of inorganic chemistry of lanthanides and actinides.
ContentThis course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) Properties and characterization of coordination compounds; 9) Introduction to radiochemistry; 10) Principles of the chemistry of the lanthanides and actinides.
Lecture notesEine kommentierte Foliensammlung ist im HCI-Shop erhältlich.
Literature- J. E. Huheey, E. Keiter, R. Keiter: Anorganische Chemie, Prinzipien von Struktur und Reaktivität, De Gruyter, 5. Auflage, 2014 (ebook available at ETH Zurich).
- N. Wiberg, Lehrbuch der Anorganischen Chemie, De Gruyter, 102. Auflage, 2008 (ebook available at ETH Zurich).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
529-0221-00LOrganic Chemistry IW3 credits2V + 1UH. Wennemers
AbstractChemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.
ObjectiveAcquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.
ContentChemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.
Lecture notesA pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.
LiteratureNo set textbooks. Optional literature will be proposed at the beginning of the class and in the lecture notes.
  •  Page  1  of  3 Next page Last page     All