Suchergebnis: Katalogdaten im Herbstsemester 2021

Mathematik Master Information
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Wahlfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
Auswahl: Mathematische Physik, Theoretische Physik
402-0843-00LQuantum Field Theory I
Fachstudierende UZH müssen das Modul PHY551 direkt an der UZH buchen.
W10 KP4V + 2UG. M. Graf
KurzbeschreibungThis course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity.
Topics include:
- Relativistic quantum mechanics
- Quantisation of bosonic and fermionic fields
- Interactions in perturbation theory
- Scattering processes and decays
- Elementary processes in QED
- Radiative corrections
LernzielThe goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics.
SkriptWill be provided as the course progresses
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Medien und digitale Technologiengefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
402-0861-00LStatistical PhysicsW10 KP4V + 2UM. Sigrist
KurzbeschreibungThis lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity.
LernzielThis lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.
InhaltKinetic approach to statistical physics: H-theorem, detailed balance and equilibirium conditions.
Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems.
Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons.
Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g. Bose-Einstein condensate and coherent state, phonons in elastic media and melting.
One-dimensional interacting systems.
Phase transitions: mean field approach to Ising model, Gaussian transformation, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls' arguments on long-range order.
Superfluidity: Quantum liquid Helium: Bogolyubov theory and collective excitations, Gross-Pitaevskii equations, Berezinskii-Kosterlitz-Thouless transition.
SkriptLecture notes available in English.
LiteraturNo specific book is used for the course. Relevant literature will be given in the course.
402-0830-00LGeneral Relativity Information
Fachstudierende UZH müssen das Modul PHY511 direkt an der UZH buchen.
W10 KP4V + 2UC. Anastasiou
KurzbeschreibungIntroduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.
LernzielBasic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).
InhaltIntroduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.
LiteraturSuggested textbooks:

C. Misner, K, Thorne and J. Wheeler: Gravitation
S. Carroll - Spacetime and Geometry: An Introduction to General Relativity
R. Wald - General Relativity
S. Weinberg - Gravitation and Cosmology
402-0897-00LIntroduction to String TheoryW6 KP2V + 1UJ. Brödel
KurzbeschreibungString theory is an attempt to quantise gravity and unite it with the other fundamental forces of nature. It is related to numerous interesting topics and questions in quantum field theory. In this course, an introduction to the basics of string theory is provided.
LernzielWithin this course, a basic understanding and overview of the concepts and notions employed in string theory shall be given. More advanced topics will be touched upon towards the end of the course briefly in order to foster further research.
Inhalt- mechanics of point particles and extended objects
- string modes and their quantisation; higher dimensions, supersymmetry
- D-branes, T-duality
- supergravity as a low-energy effective theory, strings on curved backgrounds
- two-dimensional field theories (classical/quantum, conformal/non-conformal)
LiteraturD. Lust, S. Theisen, Lectures on String Theory, Lecture Notes in Physics, Springer (1989).
M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory I, CUP (1987).
B. Zwiebach, A First Course in String Theory, CUP (2004).
J. Polchinski, String Theory I & II, CUP (1998).
Voraussetzungen / BesonderesRecommended: Quantum Field Theory I (in parallel)
  •  Seite  1  von  1