Suchergebnis: Katalogdaten im Herbstsemester 2021

Biologie Master Information
Wahlvertiefung: Biologische Chemie
Zusätzliche Konzeptkurse
551-0307-00LMolecular and Structural Biology I: Protein Structure and Function Information
D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course
W3 KP2VR. Glockshuber, K. Locher, E. Weber-Ban
KurzbeschreibungBiophysik der Proteinfaltung, Membranproteine und Biophysik von Membranen, enzymatischen Katalyse, katalytische RNA und RNAi, aktuelle Themen in Proteinbiophysik und Strukturbiologie.
LernzielVerständnis von Struktur/Funktionsbeziehungen in Proteinen, Proteinfaltung, Vertiefung der Kenntnisse in Biophysik, in physikalischen Messmethoden und modernen Methoden der Proteinreinigung und Protein-Mikroanalytik.
SkriptSkripte zu einzelnen Themen der Vorlesung sind unter Link abgelegt.
- Creighton, T.E., Proteins, Freeman, (1993).
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.
- Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001).

Aktuelle Themen: Literatur wird jeweils in der Vorlesung angegeben
551-0319-00LCellular Biochemistry (Part I) Information W3 KP2VU. Kutay, G. Neurohr, M. Peter, K. Weis, I. Zemp
KurzbeschreibungConcepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration.
LernzielThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer.
InhaltStructural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes.
Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression.
SkriptScripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (Link)
LiteraturRecommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Voraussetzungen / BesonderesTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English.
551-1299-00LIntroduction to Bioinformatics Belegung eingeschränkt - Details anzeigen W6 KP4GS. Sunagawa, M. Gstaiger, A. Kahles, G. Rätsch, B. Snijder, E. Vayena, C. von Mering, N. Zamboni
KurzbeschreibungThis course introduces principle concepts, the state-of-the-art and methods used in some major fields of Bioinformatics. Topics include: genomics, metagenomics, network bioinformatics, and imaging. Lectures are accompanied by practical exercises that involve the use of common bioinformatic methods and basic programming.
LernzielThe course will provide students with theoretical background in the area of genomics, metagenomics, network bioinformatics and imaging. In addition, students will acquire basic skills in applying modern methods that are used in these sub-disciplines of Bioinformatics. Students will be able to access and analyse DNA sequence information, construct and interpret networks that emerge though interactions of e.g. genes/proteins, and extract information based on computer-assisted image data analysis. Students will also be able to assess the ethical implications of access to and generation of new and large amounts of information as they relate to the identifiability of a person and the ownership of data.
Case studies to learn about applying ethical principles in human genomics research

Genetic variant calling
Analysis and critical evaluation of genome wide association studies

Reconstruction of microbial genomes
Microbial community compositional analysis
Quantitative metagenomics

Network bioinformatics:
Inference of molecular networks
Use of networks for interpretation of (gen)omics data

High throughput single cell imaging
Image segmentation
Automatic analysis of drug effects on single cell suspension (chemotyping)
Voraussetzungen / BesonderesCourse participants have already acquired basic programming skills in Python and R.

Students will bring and work on their own laptop computers, preferentially running the latest versions of Windows or MacOSX.
  •  Seite  1  von  1