Suchergebnis: Katalogdaten im Herbstsemester 2021
Quantum Engineering Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() A minimum of 24 credits must be obtained from core courses during the MSc QE, course selection is subject to the tutor's agreement. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() This core course is a prerequisite for participation in the QuanTech Labs of the second and third semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-1831-10L | Case Studies: Applications of Quantum Technology ![]() ![]() Only for Quantum Engineering MSc | W+ | 3 KP | 6G | G. Raino | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this course students will be exposed to different topics of quantum engineering and develop ideas for possible projects. Based on presentations by ETH labs participating in the MSc QE program and with the assistance of a mentor students will work in groups to develop concrete plans for a quantum experiment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Acquire a broad overview of quantum engineering activities at ETH and develop own ideas about future quantum engineering projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() These core courses target students with a physics background and all those who need additional engineering foundations. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0103-00L | Regelsysteme ![]() | W | 6 KP | 2V + 2U | F. Dörfler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Process automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | K. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010. R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007. G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010. J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014. J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Signal and Systems Theory II. MATLAB is used for system analysis and simulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0116-00L | VLSI 1: HDL based design for FPGAs ![]() | W | 6 KP | 5G | F. K. Gürkaynak, L. Benini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This first course in a series that extends over three consecutive terms is concerned with tailoring algorithms and with devising high performance hardware architectures for their implementation as ASIC or with FPGAs. The focus is on front end design using HDLs and automatic synthesis for producing industrial-quality circuits. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understand Very-Large-Scale Integrated Circuits (VLSI chips), Application-Specific Integrated Circuits (ASIC), and Field-Programmable Gate-Arrays (FPGA). Know their organization and be able to identify suitable application areas. Become fluent in front-end design from architectural conception to gate-level netlists. How to model digital circuits with SystemVerilog. How to ensure they behave as expected with the aid of simulation, testbenches, and assertions. How to take advantage of automatic synthesis tools to produce industrial-quality VLSI and FPGA circuits. Gain practical experience with the hardware description language SystemVerilog and with industrial Electronic Design Automation (EDA) tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is concerned with system-level issues of VLSI design and FPGA implementations. Topics include: - Overview on design methodologies and fabrication depths. - Levels of abstraction for circuit modeling. - Organization and configuration of commercial field-programmable components. - FPGA design flows. - Dedicated and general purpose architectures compared. - How to obtain an architecture for a given processing algorithm. - Meeting throughput, area, and power goals by way of architectural transformations. - Hardware Description Languages (HDL) and the underlying concepts. - SystemVerilog - Register Transfer Level (RTL) synthesis and its limitations. - Building blocks of digital VLSI circuits. - Functional verification techniques and their limitations. - Modular and largely reusable testbenches. - Assertion-based verification. - Synchronous versus asynchronous circuits. - The case for synchronous circuits. - Periodic events and the Anceau diagram. - Case studies, ASICs compared to microprocessors, DSPs, and FPGAs. During the exercises, students learn how to model FPGAs with SystemVerilog. They write testbenches for simulation purposes and synthesize gate-level netlists for FPGAs. Commercial EDA software by leading vendors is being used throughout. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Textbook and all further documents in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | H. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Basics of digital circuits. Examination: In written form following the course semester (spring term). Problems are given in English, answers will be accepted in either English oder German. Further details: https://iis-students.ee.ethz.ch/lectures/vlsi-i/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0166-00L | Analog Integrated Circuits ![]() | W | 6 KP | 2V + 2U | T. Jang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts of presented slides. No script but an accompanying textbook is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Behzad Razavi, Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Engineering) 1st or 2nd edition, McGraw-Hill Education | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0301-00L | Optical Communication Fundamentals | W | 6 KP | 2V + 1U + 1P | J. Leuthold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The path of an analog signal in the transmitter to the digital world in a communication link and back to the analog world at the receiver is discussed. The lecture covers the fundamentals of all important optical and optoelectronic components in a fiber communication system. This includes the transmitter, the fiber channel and the receiver with the electronic digital signal processing elements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | An in-depth understanding on how information is transmitted from source to destination. Also the mathematical framework to describe the important elements will be passed on. Students attending the lecture will further get engaged in critical discussion on societal, economical and environmental aspects related to the on-going exponential growth in the field of communications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | * Chapter 1: Introduction: Analog/Digital conversion, The communication channel, Shannon channel capacity, Capacity requirements. * Chapter 2: The Transmitter: Components of a transmitter, Lasers, The spectrum of a signal, Optical modulators, Modulation formats. * Chapter 3: The Optical Fiber Channel: Geometrical optics, The wave equations in a fiber, Fiber modes, Fiber propagation, Fiber losses, Nonlinear effects in a fiber. * Chapter 4: The Receiver: Photodiodes, Receiver noise, Detector schemes (direct detection, coherent detection), Bit-error ratios and error estimations. * Chapter 5: Digital Signal Processing Techniques: Digital signal processing in a coherent receiver, Error detection teqchniques, Error correction coding. * Chapter 6: Pulse Shaping and Multiplexing Techniques: WDM/FDM, TDM, OFDM, Nyquist Multiplexing, OCDMA. * Chapter 7: Optical Amplifiers : Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes are handed out. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Govind P. Agrawal; "Fiber-Optic Communication Systems"; Wiley, 2010 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Fundamentals of Electromagnetic Fields & Bachelor Lectures on Physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0417-00L | Information Theory I | W | 6 KP | 4G | A. Lapidoth | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The fundamentals of Information Theory including Shannon's source coding and channel coding theorems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | T.M. Cover and J. Thomas, Elements of Information Theory (second edition) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() These core courses target students with an engineering background and all those who need additional physics foundations. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0205-00L | Quantenmechanik I | W | 10 KP | 3V + 2U | M. Gaberdiel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Allgemeine Struktur der Quantentheorie: Hilberträume, Zustände und Observable, Bewegungsgleichung, Heisenberg'sche Unschärferelation, Symmetrien, Drehimpulsaddition, EPR Paradox, Schrödinger- und Heisenberg-Bild. Anwendungen: einfache Potentiale in der Wellenmechanik, Streuung und Resonanz, harmonischer Oszillator, Wasserstoffatom und Störungstheorie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Drehimpuls, Störungstheorie) und generischer Beispiele und Anwendungen (gebundene Zustände, Tunneleffekt, Wasserstoffatom, harmonischer Oszillator). Fähigkeit zur Lösung einfacher Probleme. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Anfänge der Quantentheorie bei Planck, Einstein und Bohr; Wellennmechanik; Beispiele einfacher Systeme; Der Formalismus der Quantenmechanik (Zustände und Observablen, Hilberträume und Operatoren, der Messprozess); Heisenberg'sche Unschärferelation; Der harmonische Oszillator; Symmetrien (insbesondere Rotationen); Das Wasserstoffatom; Angular momentum addition; Quantenmechanik und klassische Physik (EPR Paradox und Bell'sche Ungleichung); Störungstheorie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Auf Moodle, in deutscher Sprache | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0209-00L | Quantum Physics for Non-Physicists | W | 6 KP | 3V + 2U | L. Pacheco Cañamero B. del Rio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This is an introduction to the physics of quantum mechanics, aimed primarily at students with little to no background in physics. We start from the basic postulates and follow an information-theoretical approach to study the behaviour of quantum systems, from a single spin to entangled particles in space and the hydrogen atom. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course teaches the basics of quantum physics, and complements courses in quantum computation and information theory. Students are equipped with tools to tackle complex quantum mechanical problems and foundational questions. The course covers approximately the same content as QM1, but from an information-driven perspective. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Quantum formalism, from qubits to particles in space 2. Time and dynamics for quantum systems 3. Problems in 1D 4. Uncertainty and open systems 5. Spin 6. Problems in 3D 7. Non-locality and foundational aspects of quantum theory | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes will be distributed through the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Quantum Processes Systems, and Information, by Benjamin Schumacher and Michael Westmoreland, available at Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This course is aimed at non-physicists, and in particular at students with a background in computer science, mathematics or engineering. Basic linear algebra and calculus knowledge is required (equivalent to first-year courses). Physics knowledge is not required. Physicists and students from a different background than outlined above are welcome at their own risk. Note that while we follow an information-theoretical approach, this is not a course on quantum information theory or quantum computing. It therefore complements those courses offered at ETH in both semesters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0255-00L | Einführung in die Festkörperphysik | W | 10 KP | 3V + 2U | C. Degen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Strukturen von Festkörpern, Interatomare Bindungen, elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle, Halbleiter, Transportphänomene, Magnetismus, Supraleitung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in die Physik der kondensierten Materie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Mögliche Formen von Festkörpern und deren Strukturen (Strukturklassifizierung und -bestimmung); Interatomare Bindungen; elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle (klassische Theorie, quantenmechanische Beschreibung der Elektronenzustände, thermische Eigenschaften und Transportphänomene); Halbleiter (Bandstruktur, n/p-Typ Dotierungen, p/n-Kontakte); Magnetismus, Supraleitung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Das Skript wird auf Moodle verfügbar sein. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Ibach & Lüth, Festkörperphysik C. Kittel, Festkörperphysik Ashcroft & Mermin, Festkörperphysik W. Känzig, Kondensierte Materie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik I, II, III wünschenswert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0442-00L | Quantum Optics | W | 10 KP | 3V + 2U | T. Esslinger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics that are covered include: - coherence properties of light - quantum nature of light: statistics and non-classical states of light - light matter interaction: density matrix formalism and Bloch equations - quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade - laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry, - further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected book chapters will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Text-books: G. Grynberg, A. Aspect and C. Fabre, Introduction to Quantum Optics R. Loudon, The Quantum Theory of Light Atomic Physics, Christopher J. Foot Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin C. Cohen-Tannoudji et al., Atom-Photon-Interactions M. Scully and M.S. Zubairy, Quantum Optics Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0861-00L | Statistical Physics | W | 10 KP | 4V + 2U | M. Sigrist | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Kinetic approach to statistical physics: H-theorem, detailed balance and equilibirium conditions. Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems. Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons. Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g. Bose-Einstein condensate and coherent state, phonons in elastic media and melting. One-dimensional interacting systems. Phase transitions: mean field approach to Ising model, Gaussian transformation, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls' arguments on long-range order. Superfluidity: Quantum liquid Helium: Bogolyubov theory and collective excitations, Gross-Pitaevskii equations, Berezinskii-Kosterlitz-Thouless transition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | No specific book is used for the course. Relevant literature will be given in the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0461-00L | Quantum Information Theory | W | 8 KP | 3V + 1U | P. Kammerlander | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The goal of this course is to introduce the concepts and methods of quantum information theory. It starts with an introduction to the mathematical theory of quantum systems and then discusses the basic information-theoretic aspects of quantum mechanics. Further topics include applications such as quantum cryptography and quantum coding theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | By the end of the course students are able to explain the basic mathematical formalism (e.g. states, channels) and the tools (e.g. entropy, distinguishability) of quantum information theory. They are able to adapt and apply these concepts and methods to analytically solve quantum information-processing problems primarily related to communication and cryptography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Mathematical formulation of quantum theory: entanglement, density operators, quantum channels and their representations. Basic tools of quantum information theory: distinguishability of states and channels, formulation as semidefinite programs, entropy and its properties. Applications of the concepts and tools: communication of classical or quantum information over noisy channels, quantitative uncertainty relations, randomness generation, entanglement distillation, security of quantum cryptography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Distributed via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Nielsen and Chuang, Quantum Information and Computation Preskill, Lecture Notes on Quantum Computation Wilde, Quantum Information Theory Watrous, The Theory of Quantum Information | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() This is a selection of courses particularly suitable for the MSc QE. In agreement with the tutor, students may choose other courses from the ETH course catalogue. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0101-00L | Discrete-Time and Statistical Signal Processing ![]() | W | 6 KP | 4G | H.‑A. Loeliger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Discrete-time linear systems and filters: state-space realizations, z-transform and spectrum, decimation and interpolation, digital filter design, stable realizations and robust inversion. 2. The discrete Fourier transform and its use for digital filtering. 3. The statistical perspective: probability, random variables, discrete-time stochastic processes; detection and estimation: MAP, ML, Bayesian MMSE, LMMSE; Wiener filter, LMS adaptive filter, Viterbi algorithm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture Notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0145-00L | Solid State Electronics and Optics ![]() | W | 6 KP | 4G | N. Yazdani, V. Wood | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | "Solid State Electronics" is an introductory condensed matter physics course covering crystal structure, electron models, classification of metals, semiconductors, and insulators, band structure engineering, thermal and electronic transport in solids, magnetoresistance, and optical properties of solids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understand the fundamental physics behind the mechanical, thermal, electric, magnetic, and optical properties of materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Recommended background: Undergraduate physics, mathematics, semiconductor devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0146-00L | Analog-to-Digital Converters ![]() Findet dieses Semester nicht statt. | W | 6 KP | 2V + 2U | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides a thorough treatment of integrated data conversion systems from system level specifications and trade-offs, over architecture choice down to circuit implementation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Data conversion systems are substantial sub-parts of many electronic systems, e.g. the audio conversion system of a home-cinema systems or the base-band front-end of a wireless modem. Data conversion systems usually determine the performance of the overall system in terms of dynamic range and linearity. The student will learn to understand the basic principles behind data conversion and be introduced to the different methods and circuit architectures to implement such a conversion. The conversion methods such as successive approximation or algorithmic conversion are explained with their principle of operation accompanied with the appropriate mathematical calculations, including the effects of non-idealties in some cases. After successful completion of the course the student should understand the concept of an ideal ADC, know all major converter architectures, their principle of operation and what governs their performance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Introduction: information representation and communication; abstraction, categorization and symbolic representation; basic conversion algorithms; data converter application; tradeoffs among key parameters; ADC taxonomy. - Dual-slope & successive approximation register (SAR) converters: dual slope principle & converter; SAR ADC operating principle; SAR implementation with a capacitive array; range extension with segmented array. - Algorithmic & pipelined A/D converters: algorithmic conversion principle; sample & hold stage; pipe-lined converter; multiplying DAC; flash sub-ADC and n-bit MDAC; redundancy for correction of non-idealties, error correction. - Performance metrics and non-linearity: ideal ADC; offset, gain error, differential and integral non-linearities; capacitor mismatch; impact of capacitor mismatch on SAR ADC's performance. - Flash, folding an interpolating analog-to-digital converters: flash ADC principle, thermometer to binary coding, sparkle correction; limitations of flash converters; the folding principle, residue extraction; folding amplifiers; cascaded folding; interpolation for folding converters; cascaded folding and interpolation. - Noise in analog-to-digital converters: types of noise; noise calculation in electronic circuit, kT/C-noise, sampled noise; noise analysis in switched-capacitor circuits; aperture time uncertainty and sampling jitter. - Delta-sigma A/D-converters: linearity and resolution; from delta-modulation to delta-sigma modulation; first-oder delta-sigma modulation, circuit level implementation; clock-jitter & SNR in delta-sigma modulators; second-order delta-sigma modulation, higher-order modulation, design procedure for a single-loop modulator. - Digital-to-analog converters: introduction; current scaling D/A converter, current steering DAC, calibration for improved performance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides are available online under https://iis-students.ee.ethz.ch/lectures/analog-to-digital-converters/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1994 - M. Gustavsson et. al., CMOS Data Converters for Communications, Springer, 2010 - R.J. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, Springer, 2010 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | It is highly recommended to attend the course "Analog Integrated Circuits" of Prof. T. Jang as a preparation for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0157-00L | Semiconductor Devices: Physical Bases and Simulation ![]() | W | 4 KP | 3G | A. Schenk, C. I. Roman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions. The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The script (in book style) can be downloaded from: https://iis-students.ee.ethz.ch/lectures/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The script (in book style) is sufficient. Further reading will be recommended in the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Qualifications: Physics I+II, Semiconductor devices (4. semester). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0166-00L | Analog Integrated Circuits ![]() | W | 6 KP | 2V + 2U | T. Jang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; stability; comparators; second-order effects in analog circuits such as mismatch, noise and offset; data converters; frequency synthesizers; switched capacitors. The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts of presented slides. No script but an accompanying textbook is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Behzad Razavi, Design of Analog CMOS Integrated Circuits (Irwin Electronics & Computer Engineering) 1st or 2nd edition, McGraw-Hill Education | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0225-00L | Linear System Theory | W | 6 KP | 5G | A. Iannelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The class is intended to provide a comprehensive overview of the theory of linear dynamical systems, stability analysis, and their use in control and estimation. The focus is on the mathematics behind the physical properties of these systems and on understanding and constructing proofs of properties of linear control systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students should be able to apply the fundamental results in linear system theory to analyze and control linear dynamical systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Proof techniques and practices. - Linear spaces, normed linear spaces and Hilbert spaces. - Ordinary differential equations, existence and uniqueness of solutions. - Continuous and discrete-time, time-varying linear systems. Time domain solutions. Time invariant systems treated as a special case. - Controllability and observability, duality. Time invariant systems treated as a special case. - Stability and stabilization, observers, state and output feedback, separation principle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Available on the course Moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Sufficient mathematical maturity, in particular in linear algebra, analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0311-00L | Qubits, Electrons, Photons | W | 6 KP | 3V + 2U | T. Zambelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In-depth analysis of the quantum mechanics origin of nuclear magnetic resonance (qubits, two-level systems), of LASER (quantization of the electromagnetic field, photons), and of electron transfer (from electrochemistry to photosynthesis). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Beside electronics nanodevices, D-ITET is pushing its research in the fields of NMR (MRI), electrochemistry, bioelectronics, nano-optics, and quantum information, which are all rationalized in terms of quantum mechanics. Starting from the axioms of quantum mechanics, we will derive the fascinating theory describing spin and qubits, electron transitions and transfer, photons and LASER: quantum mechanics is different because it mocks our daily Euclidean intuition! In this way, students will work out a robust quantum mechanics (theoretical!) basis which will help them in their advanced studies of the following masters: EEIT (batteries), Biomedical Engineering (NMR, bioelectronics), Quantum Engineering, Micro- and Nanosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | • Lagrangian and Hamiltonian: Symmetries and Poisson Brackets • Postulates of QM: Hilbert Spaces and Operators • Heisenberg’s Matrix Mechanics: Hamiltonian and Time Evolution Operator • Spin: Qubits, Bloch Equations, and NMR • Entanglement • Symmetries and Corresponding Operators • Schrödinger's Wave Mechanics: Electrons in a Periodic Potential and Energy Bands • Harmonic Oscillator: Creation and Annihilation Operators • Identical Particles: Bosons and Fermions • Quantization of the Electromagnetic Field: Photons, Absorption and Emission, LASER • Electron Transfer: Marcus Theory via Born-Oppenheimer, Franck-Condon, Landau-Zener | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No lecture notes because the proposed textbooks together with the provided supplementary material are more than exhaustive! !!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM and correspondingly recorded (link in Moodle) !!!!! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | • J.S. Townsend, "A Modern Approach to Quantum Mechanics", Second Edition, 2012, University Science Books • M. Le Bellac, "Quantum Physics", 2011, Cambridge University Press • (Lagrangian and Hamiltonian) L. Susskind, G. Hrabovsky, "Theoretical Minimum: What You Need to Know to Start Doing Physics", 2014, Hachette Book Group USA Supplementary material will be uploaded in Moodle. _ _ _ _ _ _ _ + (as rigorous and profound presentation of the mathematical framework) G. Dell'Antonio, "Lectures on the Mathematics of Quantum Mechanics I", 2015, Springer + (as account of those formidable years) G. Gamow, "Thirty Years that Shook Physics", 1985, Dover Publications Inc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course has been intentionally conceived to be self-consistent with respect to QM for those master students not having encountered it in their track yet. Therefore, a presumably large overlapping has to be expected with a (welcome!) QM introduction course like the D-ITET "Physics II". A solid base of Analysis I & II as well as of Linear Algebra is really helpful. IMPORTANT: Wed 22.9, 29.9, and 22.12 are lectures (NOT exercises!). Please, look at the details in moodle! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0427-00L | Signal Analysis, Models, and Machine Learning Findet dieses Semester nicht statt. This course was replaced by "Introduction to Estimation and Machine Learning" and "Advanced Signal Analysis, Modeling, and Machine Learning". | W | 6 KP | 4G | H.‑A. Loeliger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Mathematical methods in signal processing and machine learning. I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity. II. Learning linear and nonlinear functions and filters: neural networks, kernel methods. III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course is an introduction to some basic topics in signal processing and machine learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis. Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods. Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximization, linear Gaussian models with sparse events. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: - local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.) - others: solid basics in linear algebra and probability theory |
Seite 1 von 3
Alle