Suchergebnis: Katalogdaten im Herbstsemester 2021

Umweltingenieurwissenschaften Master Information
Vertiefungen
Vertiefung Siedlungswasserwirtschaft
Ecological System Design
NummerTitelTypECTSUmfangDozierende
102-0307-01LAdvanced Environmental, Social and Economic Assessments Belegung eingeschränkt - Details anzeigen
Diese kombinierte Lerneinheit ist einzig für Umweltingenieurwissenschaften MSc. Alle andern Studierenden melden sich für einen oder beide Einzelkurse an.
O5 KP4GA. E. Braunschweig, S. Pfister, R. Frischknecht
KurzbeschreibungThis course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.
LernzielThis course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management
InhaltPart I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management
Students will get small excercises related to course issues.
SkriptPart I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias
LiteraturWill be made available.
Voraussetzungen / BesonderesThis course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)O1 KP1US. Pfister
KurzbeschreibungDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
LernzielBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
Process Engineering in Urban Water Management
Kein Lehrangebot im Herbstsemester, nur im Frühjahrssemester.
System Analysis in Urban Water Management
NummerTitelTypECTSUmfangDozierende
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 50.
O6 KP4GE. Morgenroth, M. Maurer
KurzbeschreibungSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
LernzielThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
InhaltThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
SkriptCopies of overheads will be made available.
LiteraturThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Voraussetzungen / BesonderesStudends should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necesssary to follow both courses simultaneously.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
102-0217-00LProcess Engineering Ia Information O3 KP2GE. Morgenroth
KurzbeschreibungBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
LernzielStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
InhaltStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
LiteraturThere will be a textbook that students need to purchase (see Link for further information).
Voraussetzungen / BesonderesFor detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at Link
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Water Infrastructure Planning and Stormwater Management
NummerTitelTypECTSUmfangDozierende
102-0250-00LUrban Drainage Planning and Modelling Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 36.

Only for Environmental Engineers Msc in the module Water Infrastructure Planning and Stormwater Management.
O6 KP4GM. Maurer, D. Gregorio, U. Karaus, J. P. Leitão Correia , J. Rieckermann
KurzbeschreibungIn this course, the students learn modern urban drainage engineering approaches, critical thinking, decision making in a complex environment as well as dealing with insufficient data and ill-defined problems.
LernzielBy the end of the course, you should be able to do the following:
-Apply different methods and methodologies to assess the impact of urban drainage on water pollution and flooding potential.
-Distinguish between hydrological and hydrodynamic models and their correct application.
-Identify the difference between emission and immersion oriented approaches for identifying drainage measures.
-Identify relevant measures, quantify their effects and assess their relative ranking/priority.
-Consider uncertainties and handle correctly incomplete data and information
-Make decisions and recommendations in a complex application case.
-Teamwork. State principles of effective team performance and the functions of different team roles; work effectively in problem-solving teams.
-Communication. Communicate and document your findings in concise group presentations and a written report.
InhaltIn urban drainage, the complexity of the decision-making, the available methodologies and the data availability have increased strongly. In current environmental engineering practice, the focus shifted from tables and nomograms to sophisticated simulation tools.
The topics cover:
-Integrated urban water management
-Hydrological and hydrodynamic modelling
-Water quality based assessment
-Freshwater ecology
-Hydraulic capacity assessment
-Sewer network operation
-Decision analysis
Voraussetzungen / BesonderesPrerequisites: 102-0214-00 Siedlungswasserwirtschaft and 102-0215-00 Siedlungswasserwirtschaft II or comparable educational background.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt geprüft
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgeprüft
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion geprüft
Selbststeuerung und Selbstmanagement geprüft
Vertiefung Umwelttechnologien
Air Quality Control
NummerTitelTypECTSUmfangDozierende
102-0377-00LAir Pollution Modeling and ChemistryO3 KP2GS. Henne, S. Reimann Bhend, X. Zhang
KurzbeschreibungAir pollutants cause negative effects on humans, wildlife and buildings. To control and reduce the impact of air pollutants, their transfer from sources to receptors needs to be known. This transfer includes transport within the atmospheric boundary layer, chemical transformation reactions and phase-transfer processes from gases to particles.
LernzielThe students understand the fundamental principles of atmospheric transport, dispersion and chemistry of pollutants on the local to regional scale and their transfer gas to particle phases (secondary aerosols). This includes the knowledge of important atmospheric reactions, sources and sinks. The obtained understanding enables the students to apply computational tools to predict the transport and transformation of chemicals at the local to regional scale.
Inhalt- Structure of the Atmosphere
- Thermodynamics of the atmosphere
- Atmospheric stability
- Atmospheric boundary layer and turbulence
- Dispersion in the atmospheric boundary layer
- Numerical models of atmospheric dispersion
- Gas phase reaction kinetics
- Tropospheric chemistry and ozone formation
- Chemistry box models
- Volatile organic pollutants (VOCs) and semi-volatile organic pollutants (SVOCs)
- Aerosol modelling
- Air pollution source apportionment
- Inverse modelling of emissions
SkriptContinued updates of:
-Slides and handouts
-Home assignments and sample solutions
-R package and code for some of the home assignments
-MATLAB codes
-Key journal articles as discussed during lecture
LiteraturAtmospheric chemistry
Jacobson, M.Z., 2012. Air Pollution and Global Warming: History, Science and Solutions, 405 pp., Cambridge University Press.
Finlayson-Pitts, B. J. and Pitts, J. N., 2000. Chemistry of the upper and lower atmosphere, 969 pp., Academic Press, San Diego.
Seinfeld, J. H. and Pandis, S. N., 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3 ed., 1203 pp., Wiley.
Sportisse Bruno, 2010. Fundamentals in Air Pollution From Processes to Modelling.
R M Harrison, R E Hester, Xavier Querol, 2016. Airborne Particulate Matter: Sources, Atmospheric Processes and Health.



Environmental organic chemistry and mass transfer
Schwarzenbach, R.P., Gschwend, P. M., Imboden, D. M., 2002. Environmental Organic Chemistry, 1328 pp, Wiley & sons, New York
Mackay D., Multimedia environmental models : the fugacity approach; Boca Raton, Fla. : Lewis Publishers; 2001; 2nd ed

Atmospheric dynamics and boundary layer
Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology, 666 pp., Kluwer Academic Publishers, Dordrecht.
Etling, D., 2008. Theoretische Meteorologie Eine Einfuhrung, 3 ed., 376 pp., Springer.

Atmospheric modelling
Jacobson, M. Z., 2005. Fundamentals of atmospheric modeling, 2 ed., 813 pp., Cambridge University Press.

Introduction to R
Dalgaard, P., 2002. Introductory statistics with R, 267 pp., Springer, New York
Voraussetzungen / Besonderesstrongly recommended: 102-0635-01L Luftreinhaltung (Air Pollution Control) or similar
Process Engineering in Urban Water Management
Kein Lehrangebot im Herbstsemester, nur im Frühjahrssemester.
System Analysis in Urban Water Management
NummerTitelTypECTSUmfangDozierende
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 50.
O6 KP4GE. Morgenroth, M. Maurer
KurzbeschreibungSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
LernzielThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
InhaltThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
SkriptCopies of overheads will be made available.
LiteraturThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Voraussetzungen / BesonderesStudends should have a general understanding of urban water management as many examples are taken from processes relevant to related systems. This course is offered in parallel with the course Process Engineering Ia. It is beneficial but not necesssary to follow both courses simultaneously.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
102-0217-00LProcess Engineering Ia Information O3 KP2GE. Morgenroth
KurzbeschreibungBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
LernzielStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
InhaltStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
LiteraturThere will be a textbook that students need to purchase (see Link for further information).
Voraussetzungen / BesonderesFor detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at Link
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Waste Management
Hinweis: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories nur für Studierende, die ebenfalls das Modul "System Analysis in Urban Water Management" wählen als Ersatzfach für 102-0217-00 Process Engineering Ia im Modul "Waste Management".
NummerTitelTypECTSUmfangDozierende
102-0357-00LWaste Recycling TechnologiesO3 KP2GR. Bunge
KurzbeschreibungWaste Recycling Technology (WRT) is a sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.
LernzielAt the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.
InhaltIntroduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland

Fundamentals
Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials
Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
Flow sheet basics: Balancing mass flows
Standard processes: batch vs. continuous …
Assessment of separation success: Separation function; grade vs. recovery

Separation Processes
Separation according to size and shape (Classification): Screening, Flow separation
Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation
SkriptThe script consists of the slides shown during the lectures. Background material will be provided on the script-server.
LiteraturA list of recommended books will be provided.
Voraussetzungen / BesonderesThe topic will be discussed not from the perspective of theory, but rather in the context of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.
102-0337-00LLandfilling, Contaminated Sites and Radioactive Waste Repositories Belegung eingeschränkt - Details anzeigen
Only for Environmental Engineering MSc.
O3 KP2GM. Plötze, W. Hummel
KurzbeschreibungPractices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.
LernzielUpon successful completion of this course students are able to:
- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants
- describe technologies available to minimize environmental contamination
- describe the principles in handling of contaminated sites and to propose and evaluate suitable remediation techniques
- explain the concepts that underlie radioactive waste disposal practices
InhaltThis lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.
SkriptShort script plus copies of overheads
LiteraturLiterature will be made available.
102-0217-00LProcess Engineering Ia Information O3 KP2GE. Morgenroth
KurzbeschreibungBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
LernzielStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
InhaltStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
LiteraturThere will be a textbook that students need to purchase (see Link for further information).
Voraussetzungen / BesonderesFor detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at Link
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Vertiefung Ressourcenmanagement
Ecological System Design
NummerTitelTypECTSUmfangDozierende
102-0307-01LAdvanced Environmental, Social and Economic Assessments Belegung eingeschränkt - Details anzeigen
Diese kombinierte Lerneinheit ist einzig für Umweltingenieurwissenschaften MSc. Alle andern Studierenden melden sich für einen oder beide Einzelkurse an.
O5 KP4GA. E. Braunschweig, S. Pfister, R. Frischknecht
KurzbeschreibungThis course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.
LernzielThis course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management
InhaltPart I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management
Students will get small excercises related to course issues.
SkriptPart I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias
LiteraturWill be made available.
Voraussetzungen / BesonderesThis course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)O1 KP1US. Pfister
KurzbeschreibungDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
LernzielBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
Groundwater
Das Modul wird jeweils im Frühjahrssemester angeboten.
Waste Management
Hinweis: 102-0337-00 Landfilling, Contaminated Sites and Radioactive Waste Repositories nur für Studierende, die ebenfalls das Modul "System Analysis in Urban Water Management" wählen als Ersatzfach für 102-0217-00 Process Engineering Ia im Modul "Waste Management".
NummerTitelTypECTSUmfangDozierende
102-0357-00LWaste Recycling TechnologiesO3 KP2GR. Bunge
KurzbeschreibungWaste Recycling Technology (WRT) is a sub-discipline of Mechanical Process Engineering. WRT is employed in production plants processing contaminated soil, construction wastes, scrap metal, recovered paper and the like. While WRT is well established in Central Europe, it is only just now catching on in emerging markets as well.
LernzielAt the core of this course is the separation of mixtures of solid bulk materials according to physical properties such as color, electrical conductivity, magnetism and so forth. After having taken this course, the students should have concept not only of the unit operations employed in WRT but also of how these unit operations are integrated into the flow sheets of production plants.
InhaltIntroduction
Waste Recycling: Scope and objectives
Waste recycling technologies in Switzerland

Fundamentals
Properties of particles: Liberation conditions, Particle size and shape, Porosity of bulk materials
Fluid dynamics of particles: Stationary particle beds, Fluidized beds, Free settling particles
Flow sheet basics: Balancing mass flows
Standard processes: batch vs. continuous …
Assessment of separation success: Separation function; grade vs. recovery

Separation Processes
Separation according to size and shape (Classification): Screening, Flow separation
Separation according to material properties (Concentration): Manual Sorting, Gravity concentration; Magnetic separation, Eddy current separation, Electrostatic separation, Sensor technology, Froth flotation
SkriptThe script consists of the slides shown during the lectures. Background material will be provided on the script-server.
LiteraturA list of recommended books will be provided.
Voraussetzungen / BesonderesThe topic will be discussed not from the perspective of theory, but rather in the context of practical application. However, solid fundamentals in physics (in particular in mechanics) are strongly recommended.
102-0337-00LLandfilling, Contaminated Sites and Radioactive Waste Repositories Belegung eingeschränkt - Details anzeigen
Only for Environmental Engineering MSc.
O3 KP2GM. Plötze, W. Hummel
KurzbeschreibungPractices of landfilling and remediation of contaminated sites and disposal of radioactive waste are based on the same concepts that aim to protect the environment. The assessment of contaminants that may leach into the environment as a function of time and how to reduce the rate of their release is key to the design of chemical, technical and geological barriers.
LernzielUpon successful completion of this course students are able to:
- assess the risk posed to the environment of landfills, contaminated sites and radioactive waste repositories in terms of fate and transport of contaminants
- describe technologies available to minimize environmental contamination
- describe the principles in handling of contaminated sites and to propose and evaluate suitable remediation techniques
- explain the concepts that underlie radioactive waste disposal practices
InhaltThis lecture course comprises of lectures with exercises and guided case studies.
- A short overview of the principles of environmental protection in waste management and how this is applied in legislation.
- A overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes that control redox state and pH buffer capacity; mobility of heavy metals and organic compounds
- Technical barrier design and function. Clay as a barrier.
- Contaminated site remediation: Site evaluation, remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.
SkriptShort script plus copies of overheads
LiteraturLiterature will be made available.
102-0217-00LProcess Engineering Ia Information O3 KP2GE. Morgenroth
KurzbeschreibungBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
LernzielStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
InhaltStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
LiteraturThere will be a textbook that students need to purchase (see Link for further information).
Voraussetzungen / BesonderesFor detailed information on prerequisites the student should consult the lecture program and important information (syllabus) of Process Engineering Ia that can be downloaded at Link
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Water Resources Management
NummerTitelTypECTSUmfangDozierende
102-0468-10LWatershed ModellingO6 KP4GP. Molnar
KurzbeschreibungWatershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises).
LernzielThe main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 4 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 50% by performance in the graded exercises and 50% by a semester-end oral examination (30 mins) on watershed modelling concepts.
InhaltThe first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models at larger scales. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns.
SkriptThere is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work.
LiteraturLiterature consist of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page.
Voraussetzungen / BesonderesBasic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS).
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenKritisches Denkengeprüft
Integrität und Arbeitsethikgeprüft
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Vertiefung Wasserwirtschaft
Flow and Transport
NummerTitelTypECTSUmfangDozierende
101-0267-01LNumerical HydraulicsO3 KP2GM. Holzner
KurzbeschreibungIn the course Numerical Hydraulics the basics of numerical modelling of flows are presented.
LernzielThe goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.
InhaltThe basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied pratically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generelly available softwares such as BASEMENT for non-steady shallow water flows are used.
SkriptLecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.
LiteraturGiven in lecture
102-0259-00LEcohydraulics and Habitat ModellingO3 KP2GR. Stocker, K.‑D. Jorde, L. G. Martins da Silva, A. Siviglia
KurzbeschreibungAt a time in which humans have significantly affected the natural environment and yet society increasingly values the many services of natural ecosystems, accounting for ecological processes in engineering design is a major contemporary challenge for environmental and civil engineers.
LernzielThis is the fundamental topic in ecohydraulics, the discipline that focuses on the consequences of fluid flow and related physical processes on the organisms that inhabit aquatic environments. While still a young science, ecohydraulics already endows the engineer with an overall understanding and quantitative tools to predict how physical processes shape habitat quality and quantity, enabling the analysis of different management options for natural and man-made water bodies in terms of their ecosystem consequences.
InhaltThis class will take a broad view of ecohydraulics and introduce students to key concepts in aquatic habitat modeling. Recognizing that an ecosystem is composed of diverse organisms with different seasonal habitat requirements across a range of scales, the class will focus on multiple representative groups of organisms, including fish, macroinvertebrates, plankton, and vegetation. The lectures will build on the students' knowledge of hydraulics, to give them both an appreciation for the dependence of organisms on their physical environment and a set of quantitative modeling approaches that they can take with them into engineering practice, in fields ranging from hydropower development and upgrade, to reservoir operation, river restoration, flood protection, water management and beyond. At the broadest scale, this class will contribute to the students' appreciation of the tight link between the natural and the built or impacted environment, and of the imperatives of considering both in the design process.
Landscape
NummerTitelTypECTSUmfangDozierende
103-0347-00LLandscape Planning and Environmental Systems Belegung eingeschränkt - Details anzeigen O3 KP2VA. Grêt-Regamey
KurzbeschreibungIm Kurs werden die Methoden zur Erfassung und Messung
der Landschaftseigenschaften, sowie Massnahmen und Umsetzung in der Landschaftsplanung vermittelt. Die Landschaftsplanung wird in den Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) gestellt und hinsichtlich gesellschaftspolitischer Zukunftsfragen diskutiert.
LernzielZiele der Vorlesung sind:
1) Der Begriff Landschaftsplanung, die ökonomische Bedeutung von Landschaft und Natur im Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) erläutern.
2) Die Landschaftsplanung als umfassendes Informationssystem zur Koordination verschiedener Instrumente aufzeigen, indem die Ziele, Methoden, die Instrumente und deren Funktion in der Landschaftsplanung erläutert werden.
3) Die Leistungen von Ökosystemen verdeutlichen.
4) Die Grundlageninformationen über Natur und Landschaft aufzeigen: Analyse und Bewertung des komplexen Wirkungsgefüges aller Landschaftsfaktoren, Auswirkungen vorhandener und absehbaren Raumnutzungen (Naturgüter und Landschaftsfunktionen).
5) Die Erfassung und Messung der Eigenschaften der Landschaft.
6) Zweckmässiger Einsatz von GIS für die Landschaftsplanung kennen lernen.
InhaltIn dieser Vorlesung werden folgende Themen behandelt:
- Definition Landschaft, Landschaftsbegriff
- Lanschaftsstrukturmasse
- Landschaftswandel
- Landschaftsplanung
- Methoden, Instrumente und Ziele in der Landschaftsplanung (Politik)
- Gesellschaftspolitische Zukunftsfragen
- Umweltsysteme, ökologische Vernetzung
- ökosystemleistungen
- Urbane Landschaftsdienstleistungen
- Praxis der Landschaftsplanung
- Einsatz von GIS in der Landschaftsplanung
SkriptKein Skript.
Die Unterlagen, bestehend aus Präsentationsunterlagen der einzelnen Referate werden teilweise abgegeben und stehen auf Moodle zum Download bereit.
Voraussetzungen / BesonderesDie Inhalte der Vorlesung werden in der zugehörigen Lehrveranstaltung 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) verdeutlicht. Eine entsprechende Kombination der Lehrveranstaltungen wird empfohlen.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle