Search result: Catalogue data in Spring Semester 2021

Computational Science and Engineering Bachelor Information
For All Programme Regulations
Fields of Specialization
Geophysics
Recommended combinations:
Subject 1 + Subject 2
Subject 1 + Subject 3
Subject 2 + Subject 3
Subject 3 + Subject 4
Subject 5 + Subject 6 + Subject 8
Subject 4 + Subject 5
Subject 7 + Subject 8
Geophysics: Subject 6
NumberTitleTypeECTSHoursLecturers
651-4006-00LSeismology of the Spherical EarthW3 credits3GM. van Driel, S. C. Stähler
AbstractBrief review of continuum mechanics and the seismic wave equation; P and S waves; reciprocity and representation theorems; eikonal equation and ray tracing; Huygens and Fresnel; surface-waves; normal-modes; seismic interferometry and noise; numerical solutions.
ObjectiveAfter taking this course, students will have the background knowledge necessary to start an original research project in quantitative seismology.
LiteratureShearer, P., Introduction to Seismology, Cambridge University Press,
1999.

Aki, K. and P. G. Richards, Quantitative Seismology, second edition,
University Science Books, Sausalito, 2002.

Nolet, G., A Breviary of Seismic Tomography, Cambridge University Press, 2008.
Prerequisites / NoticeThis is a quantitative lecture with an emphasis on mathematical description of wave propagation phenomena on the global scale, hence basic knowledge in vector calculus, linear algebra and analysis as well as seismology (e.g. from the 'wave propagation' lecture) are essential to follow this course.
  •  Page  1  of  1