Search result: Catalogue data in Spring Semester 2021
Computational Science and Engineering Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
227-0216-00L | Control Systems II ![]() | W | 6 credits | 4G | R. Smith | |
Abstract | Introduction to basic and advanced concepts of modern feedback control. | |||||
Objective | Introduction to basic and advanced concepts of modern feedback control. | |||||
Content | This course is designed as a direct continuation of the course "Regelsysteme" (Control Systems). The primary goal is to further familiarize students with various dynamic phenomena and their implications for the analysis and design of feedback controllers. Simplifying assumptions on the underlying plant that were made in the course "Regelsysteme" are relaxed, and advanced concepts and techniques that allow the treatment of typical industrial control problems are presented. Topics include control of systems with multiple inputs and outputs, control of uncertain systems (robustness issues), limits of achievable performance, and controller implementation issues. | |||||
Lecture notes | The slides of the lecture are available to download. | |||||
Literature | Skogestad, Postlethwaite: Multivariable Feedback Control - Analysis and Design. Second Edition. John Wiley, 2005. | |||||
Prerequisites / Notice | Prerequisites: Control Systems or equivalent | |||||
227-0046-10L | Signals and Systems II | W | 4 credits | 2V + 2U | J. Lygeros | |
Abstract | Continuous and discrete time linear system theory, state space methods, frequency domain methods, controllability, observability, stability. | |||||
Objective | Introduction to basic concepts of system theory. | |||||
Content | Modeling and classification of dynamical systems. Modeling of linear, time invariant systems by state equations. Solution of state equations by time domain and Laplace methods. Stability, controllability and observability analysis. Frequency domain description, Bode and Nyquist plots. Sampled data and discrete time systems. Advanced topics: Nonlinear systems, chaos, discrete event systems, hybrid systems. | |||||
Lecture notes | Copy of transparencies | |||||
Literature | Recommended: K.J. Astrom and R. Murray, "Feedback Systems: An Introduction for Scientists and Engineers", Princeton University Press 2009 http://www.cds.caltech.edu/~murray/amwiki/ |
Page 1 of 1