Search result: Catalogue data in Spring Semester 2021

Science, Technology, and Policy Master Information
Minor in Natural Sciences and Engineering
Energy and Mobility
NumberTitleTypeECTSHoursLecturers
529-0191-01LElectrochemical Energy Conversion and Storage TechnologiesW4 credits3GL. Gubler, E. Fabbri, J. Herranz Salañer
AbstractThe course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system.
ObjectiveStudents will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated.
ContentOverview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis.
Lecture notesall lecture materials will be available for download on the course website.
Literature- M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019).
- C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007).
- T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018)
Prerequisites / NoticeBasic physical chemistry background required, prior knowledge of electrochemistry basics desired.
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 credits3GM. Mazzotti, A. Bardow, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter
AbstractCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
ObjectiveThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
ContentBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
Lecture notesPower Point slides and distributed handouts
LiteratureIPCC Special Report on Global Warming of 1.5°C, 2018.
Link

IPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Prerequisites / NoticeExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0206-00LEnergy Systems and Power EngineeringW4 credits2V + 2UR. S. Abhari, A. Steinfeld
AbstractIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ObjectiveIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ContentWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
Lecture notesVorlesungsunterlagen werden verteilt
103-0448-01LTransformation of Urban Landscapes
Only for masters students, otherwise a special permit of the lecturer is necessary.
W3 credits2GJ. Van Wezemael, A. Gonzalez Martinez
AbstractThe lecture course addresses the transformation of urban landscapes towards sustainable inward development. The course reconnects two largely separated complexity approaches in «spatial planning» and «urban sciences» as a basic framework to look at a number of spatial systems considering economic, political, and cultural factors. Focus lies on participation and interaction of students in groups.
Objective- Understand cities as complex adaptive systems
- Understand planning in a complex context and planning competitions as decision-making
- Seeing cities through big data and understand (Urban) Governance as self-organization
- Learn Design-Thinking methods for solving problems of inward development
- Practice presentation skills
- Practice argumentation and reflection skills by writing critiques
- Practice writing skills in a small project
- Practice teamwork
ContentStarting point and red thread of the lecture course is the transformation of urban landscapes as we can see for example across the Swiss Mittelland - but in fact also globally. The lecture course presents a theoretical foundation to see cities as complex systems. On this basis it addresses practical questions as well as the complex interplay of economic, political or spatial systems.

While cities and their planning were always complex the new era of globalization exposed and brought to the fore this complexity. It created a situation that the complexity of cities can no longer be ignored. The reason behind this is the networking of hitherto rather isolated places and systems across scales on the basis of Information and Communication Technologies. «Parts» of the world still look pretty much the same but we have networked them and made them strongly interdependent. This networking fuels processes of self-organization. In this view regions emerge from a multitude of relational networks of varying geographical reach and they display intrinsic timescales at which problems develop. In such a context, an increasing number of planning problems remain unaffected by either «command-and-control» approaches or instruments of spatial development that are one-sidedly infrastructure- or land-use orientated. In fact, they urge for novel, more open and more bottom-up assembling modes of governance and a «smart» focus on how space is actually used. Thus, in order to be effective, spatial planning and governance must be reconceptualised based on a complexity understanding of cities and regions, considering self-organizing and participatory approaches and the increasingly available wealth of data.
LiteratureA reader with original papers will be provided via the ILIAS system.
Prerequisites / NoticeOnly for masters students, otherwise a special permit of the lecturer is necessary.
151-0254-00LEnvironmental Aspects of Future Mobility
Note: previous course title in FS20 "Environmental Aspects of IC-Engines"
W4 credits2V + 1UY. Wright, P. Dimopoulos Eggenschwiler
AbstractThe course describes and assesses the environmental performance of current and future Mobility/Transportation and Transformation paths to sustainability. It focuses in particular on the future role of renewable synthetic chemical energy carriers from a technology point of view.
ObjectiveThe students should understand the systemic nature of the Mobility/Transportation System and be able to elaborate solutions for the defossilization of the sector. At the end of the course they should be capable to assess alternative technologies for the different subsectors for transport of people and freight including the “upstream” energy supply processes.
ContentMobility system structure, future demand trends for the various sectors (road, marine, aviation, people, freight) and appropriate energy carriers per application. Brief overview over conversion technologies. Combustion fundamentals and pollutant minimization methods for conventional and renewable fuels. Exhaust gas of aftertreatment for combustion engines and atmospheric immissions. Methods for producing renewable synthetic fuels (electrolysis, methanation/synthesis of higher hydrocarbons etc.) and related infrastructure requirements. Sector coupling and estimates of requested electricity for direct and indirect (via chemical energy carriers) electrification of mobility and appropriate supply sources.
  •  Page  1  of  1