# Search result: Catalogue data in Spring Semester 2021

Physics Bachelor | ||||||

First Year Compulsory Courses | ||||||

First Year Examination Block 2 | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

401-1262-07L | Analysis II | O | 10 credits | 6V + 3U | G. Felder | |

Abstract | Introduction to differential and integral calculus in several real variables, vector calculus: differential, partial derivative, implicit functions, inverse function theorem, minima with constraints; Riemann integral, vector fields, differential forms, path integrals, surface integrals, divergence theorem, Stokes' theorem. | |||||

Objective | ||||||

Content | Calculus in several variables; curves and surfaces in R^n; extrema with constraints; integration in n dimensions; vector calculus. | |||||

Literature | H. Amann, J. Escher: Analysis II Link J. Appell: Analysis in Beispielen und Gegenbeispielen Link R. Courant: Vorlesungen über Differential- und Integralrechnung Link O. Forster: Analysis 2 Link H. Heuser: Lehrbuch der Analysis Link K. Königsberger: Analysis 2 Link W. Walter: Analysis 2 Link V. Zorich: Mathematical Analysis II (englisch) Link | |||||

401-1152-02L | Linear Algebra II | O | 7 credits | 4V + 2U | M. Akka Ginosar | |

Abstract | Eigenvalues and eigenvectors, Jordan normal form, bilinear forms, euclidean and unitary vector spaces, selected applications. | |||||

Objective | Basic knowledge of the fundamentals of linear algebra. | |||||

Literature | Siehe Lineare Algebra I | |||||

Prerequisites / Notice | Linear Algebra I | |||||

401-1662-10L | Introduction to Numerical Methods | O | 6 credits | 4G + 2U | V. C. Gradinaru | |

Abstract | This course gives an introduction to numerical methods, aimed at physics majors. It covers numerical linear algebra, quadrature as well as initial vaule problems. The focus is on the ability to apply the numerical methods. | |||||

Objective | Overview on the most important algorithms for the solution of the fundamental numerical problems in Physics and applications; overview on available software for the numerical solutions; ability to solve concrete problems ability to interpret numerical results | |||||

Content | Least squares (linear and non-linear), nonlinear equations, numerical quadrature, initial value problems. | |||||

Lecture notes | Notes, slides and other relevant materials will be available via the web page of the lecture. | |||||

Literature | Relevant materials will be available via the web page of the lecture. | |||||

Prerequisites / Notice | Prerequisite is familiarity with basic calculus (approximation theory and vector calculus: grad, div, curl) and linear algebra (Gauss-elimination, matrix decompositions and algorithms, determinant). Study Center hours: Do 17-20 in HG E 41 Fr 17-20 in HG E 41 | |||||

402-1782-00L | Physics II | O | 7 credits | 4V + 2U | R. Wallny | |

Abstract | Introduction to theory of waves, electricity and magnetism. This is the continuation of Physics I which introduced the fundamentals of mechanics. | |||||

Objective | basic knowledge of mechanics and electricity and magnetism as well as the capability to solve physics problems related to these subjects. |

- Page 1 of 1