Search result: Catalogue data in Spring Semester 2021

Electrical Engineering and Information Technology Bachelor Information
6th Semester: Third Year Core Courses
Can be freely combined, a list of recommendations is available under www.ee.ethz.ch/bachelor-kernfaecher
NumberTitleTypeECTSHoursLecturers
227-0104-00LCommunication and Detection Theory Information W6 credits4GA. Lapidoth
AbstractThis course teaches the foundations of modern digital communications and detection theory. Topics include the geometry of the space of energy-limited signals; the baseband representation of passband signals, spectral efficiency and the Nyquist Criterion; the power and power spectral density of PAM and QAM; hypothesis testing; Gaussian stochastic processes; and detection in white Gaussian noise.
Learning objectiveThis is an introductory class to the field of wired and wireless communication. It offers a glimpse at classical analog modulation (AM, FM), but mainly focuses on aspects of modern digital communication, including modulation schemes, spectral efficiency, power budget analysis, block and convolu- tional codes, receiver design, and multi- accessing schemes such as TDMA, FDMA and Spread Spectrum.
Content- Baseband representation of passband signals.
- Bandwidth and inner products in baseband and passband.
- The geometry of the space of energy-limited signals.
- The Sampling Theorem as an orthonormal expansion.
- Sampling passband signals.
- Pulse Amplitude Modulation (PAM): energy, power, and power spectral density.
- Nyquist Pulses.
- Quadrature Amplitude Modulation (QAM).
- Hypothesis testing.
- The Bhattacharyya Bound.
- The multivariate Gaussian distribution
- Gaussian stochastic processes.
- Detection in white Gaussian noise.
Lecture notesn/a
LiteratureA. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2nd edition (2017)
227-0111-00LCommunication Electronics
Does not take place this semester.
W6 credits2V + 2Uto be announced
AbstractElectronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively.
Learning objectiveFoundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver.
ContentAccounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications.
This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications.
We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier.
We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance.
When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail.
Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter.
A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base.
An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized.
Lecture notesScript is available online under https://iis-students.ee.ethz.ch/lectures/communication-electronics/
Prerequisites / NoticeThe course Analog Integrated Circuits is recommended as preparation for this course.
227-0112-00LHigh-Speed Signal Propagation Information W6 credits2V + 2UC. Bolognesi
AbstractUnderstanding of high-speed signal propagation in microwave cables and integrated circuits and printed circuit boards.

As clock frequencies rise in the GHz domain, there is a need grasp signal propagation to maintain good signal integrity in the face of symbol interference and cross-talk.

The course is of high value to all interested in high-speed analog (RF, microwave) or digital systems.
Learning objectiveUnderstanding of high-speed signal propagation in interconnects, microwave cables and integrated transmission lines such as microwave integrated circuits and/or printed circuit boards.

As system clock frequencies continuously rise in the GHz domain, a need urgently develops to understand high-speed signal propagation in order to maintain good signal integrity in the face of phenomena such as inter-symbol interference (ISI) and cross-talk.

Concepts such as Scattering parameters (or S-parameters) are key to the characterization of networks over wide bandwidths. At high frequencies, all structures effectively become "transmission lines." Unless care is taken, it is highly probable that one ends-up with a bad transmission line that causes the designed system to malfunction.

Filters will also be considered because it turns out that some of the problems associated by lossy transmission channels (lines, cables, etc) can be corrected by adequate filtering in a process called "equalization."
ContentTransmission line equations of the lossless and lossy TEM-transmission line. Introduction of current and voltage waves. Representation of reflections in the time and frequency domain. Application of the Smith chart. Behavior of low-loss transmission lines. Attenuation and impulse distortion due to skin effect. Transmission line equivalent circuits. Group delay and signal dispersion. Coupled transmission lines. Scattering parameters.
Butterworth-, Chebychev- and Bessel filter approximations: filter synthesis from low-pass filter prototypes.
Lecture notesScript: Leitungen und Filter (In German).
Prerequisites / NoticeExercises will be held in English.
227-0117-10LExperimental Techniques Restricted registration - show details W6 credits4GC. Franck, H.‑J. Weber
AbstractThis lecture is an introduction to experimental and measurement techniques. The course is designed with practical relevance in mind and comprises several laboratory modules where the students perform, evaluate and document experiments. The taught topics are of relevance for all electrical engineering disciplines, in this course they are taught with examples of high-voltage engineering.
Learning objectiveAt the end of this lecture, the students will be able to:
- perform basic practical laboratory experiments and record data, in particular with an oscilloscope.
- take a meaningful Lab Notebook, write a clear measurement evaluation protocol, and can estimate the accuracy and precision of the evaluated data.
- can explain the main reasons for electromagnetic interference and propose measures to avoid or reduce these interferences.
- Explain and use different methods to generate and measure high voltages and calculate basic relevant relations.
Content- Messtechnik, Messunsicherheit, Messprotokolle
- Erzeugung und Messung hoher Spannungen
- Elektromagnetische Verträglichkeit
- Laborpraktika
Lecture notesVorlesungsunterlagen
LiteratureJ. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719)
A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994)
A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099)
227-0120-00LCommunication Networks Information W6 credits4GL. Vanbever
AbstractAt the end of this course, you will understand the fundamental concepts behind communication networks and the Internet. Specifically, you will be able to:

- understand how the Internet works;
- build and operate Internet-like infrastructures;
- identify the right set of metrics to evaluate the performance of a network and propose ways to improve it.
Learning objectiveAt the end of the course, the students will understand the fundamental concepts of communication networks and Internet-based communications. Specifically, students will be able to:

- understand how the Internet works;
- build and operate Internet-like network infrastructures;
- identify the right set of metrics to evaluate the performance or the adequacy of a network and propose ways to improve it (if any).

The course will introduce the relevant mechanisms used in today's networks both from an abstract perspective but also from a practical one by presenting many real-world examples and through multiple hands-on projects.

For more information about the lecture, please visit: https://comm-net.ethz.ch
Lecture notesLecture notes and material for the course will be available before each course on: https://comm-net.ethz.ch
LiteratureMost of course follows the textbook "Computer Networking: A Top-Down Approach (6th Edition)" by Kurose and Ross.
Prerequisites / NoticeNo prior networking background is needed. The course will include some programming assignments (in Python) for which the material covered in Technische Informatik 1 (227-0013-00L) will be useful.
227-0125-00LOptics and PhotonicsW6 credits2V + 2UJ. Leuthold
AbstractThis lecture covers both - the fundamentals of "Optics" such as e.g. "ray optics", "coherence", the "Planck law" or the "Einstein relations" but also the fundamentals of "Photonics" on the generation, processing, transmission and detection of photons.
Learning objectiveA sound base for work in the field of optics and photonics will be given.
ContentChapter 1: Ray Optics
Chapter 2: Electromagnetic Optics
Chapter 3: Polarization
Chapter 4: Coherence and Interference
Chapter 5: Fourier Optics and Diffraction
Chapter 6: Guided Wave Optics
Chapter 7: Optical Fibers
Chapter 8: The Laser
Lecture notesLecture notes will be handed out.
Prerequisites / NoticeFundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics.
227-0156-00LPower SemiconductorsW6 credits4GU. Grossner
AbstractPower semiconductor devices are the core of today's energy efficient electronics. In this course, an understanding of the functionality of modern power devices is developed. Typical device concepts for power rectifiers and transistors are discussed. In addition to silicon-based devices, wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are considered.
Learning objectiveThe goal of this course is to develop an understanding of modern power device concepts. After following the course, the student will be able to choose a power device for an application, know the basic functionality, and is able to describe the performance and reliability related building blocks of the device design. Furthermore, the student will have an understanding of current and future developments in power devices.
Content• Basic semiconductor physics concepts
• Device design/conceptual thinking
• Device simulation (TCAD)
• Device processing
• Diodes
• BJT and JFET
• Thyristor
• MOSFET and power MOSFET
• IGBT and HEMT
• Packaging and Applications
Lecture notesScript will be made available via Moodle, printouts of the slides will be distributed during the lectures.
LiteratureThe course follows a collection of different books; more details are being listed in the script.
Prerequisites / NoticeVorlesungen Halbleiterbauelemente, Leistungselektronik
227-0160-00LFundamentals of Physical Modeling and SimulationsW6 credits2V + 2U + 1PJ. Smajic
AbstractMathematical description of different physical phenomena and numerical methods for solving the obtained equations are discussed. The course presents the fundamentals of mathematical modeling including ordinary and partial differential equations along with boundary and initial conditions. Finite Difference Method and Finite Element Method for solving boundary value problems are shown in detail.
Learning objectiveAfter completing this course a student will understand the main idea of representing physical phenomena with mathematical equations, will be able to apply an appropriate numerical method for solving the obtained equations, and will possess the knowledge to qualitatively evaluate the obtained results.
Contenta. Introduction to physical modeling and simulations
b. Numerical methods for solving boundary (initial) value problems
b.i. Finite difference method (FDM)
b.ii. Finite element method (FEM)
c. Boundary (initial) value problems of different physical phenomena
c.i. Static and dynamic electric current distribution in solid conductors
c.ii. Static und dynamic electric charge transport in semiconductors
c.iii. Induced eddy currents in low frequency range (with numerous examples from the area of electrical energy technology)
c.iv. Wave propagation in the RF-, microwave-, and optical frequency range (with numerous examples relevant for communication technology)
c.v. Static and dynamic temperature distribution in solid bodies (with numerous examples relevant for electrical energy technology)
c.vi. Static and dynamic mechanical structural analysis (with numerous examples from the area of MEMS technology)
Lecture notesLecture notes, Matlab programs, exercises and their solutions will be handed out.
LiteratureJ. Smajic, “How To Perform Electromagnetic Finite Element Analysis”, The International Association for the Engineering Modelling, Analysis & Simulation Community (NAFEMS), NAFEMS Ltd., Hamilton, UK, 2016.
Prerequisites / NoticeFundamentals of Electromagnetic Fields, and Bachelor Lectures on Physics.
227-0395-00LNeural SystemsW6 credits2V + 1U + 1AR. Hahnloser, M. F. Yanik, B. Grewe
AbstractThis course introduces principles of information processing in neural systems. It covers basic neuroscience for engineering students, experiment techniques used in animal research and methods for inferring neural mechanisms. Students learn about neural information processing and basic principles of natural intelligence and their impact on artificially intelligent systems.
Learning objectiveThis course introduces
- Basic neurophysiology and mathematical descriptions of neurons
- Methods for dissecting animal behavior
- Neural recordings in intact nervous systems and information decoding principles
- Methods for manipulating the state and activity in selective neuron types
- Neuromodulatory systems and their computational roles
- Reward circuits and reinforcement learning
- Imaging methods for reconstructing the synaptic networks among neurons
- Birdsong and language
- Neurobiological principles for machine learning.
ContentFrom active membranes to propagation of action potentials. From synaptic physiology to synaptic learning rules. From receptive fields to neural population decoding. From fluorescence imaging to connectomics. Methods for reading and manipulation neural ensembles. From classical conditioning to reinforcement learning. From the visual system to deep convolutional networks. Brain architectures for learning and memory. From birdsong to computational linguistics.
Prerequisites / NoticeBefore taking this course, students are encouraged to complete "Bioelectronics and Biosensors" (227-0393-10L).

As part of the exercises for this class, students are expected to complete a programming or literature review project to be defined at the beginning of the semester.
  •  Page  1  of  1