Search result: Catalogue data in Spring Semester 2021

Mathematics Master Information
Course Units for Additional Admission Requirements
The courses below are only available for MSc students with additional admission requirements.
NumberTitleTypeECTSHoursLecturers
406-2004-AALAlgebra II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-5 credits11RM. Burger
AbstractGalois theory and related topics.

The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
ObjectiveIntroduction to fundamentals of field extensions, Galois theory, and related topics.
ContentThe main topic is Galois Theory. Starting point is the problem of solvability of algebraic equations by radicals. Galois theory solves this problem by making a connection between field extensions and group theory. Galois theory will enable us to prove the theorem of Abel-Ruffini, that there are polynomials of degree 5 that are not solvable by radicals, as well as Galois' theorem characterizing those polynomials which are solvable by radicals.
LiteratureJoseph J. Rotman, "Advanced Modern Algebra" third edition, part 1,
Graduate Studies in Mathematics,Volume 165
American Mathematical Society

Galois Theory is the topic treated in Chapter A5.
Prerequisites / NoticeAlgebra I, in Rotman's book this corresponds to the topics treated in the Chapters A3 and A4.
406-2005-AALAlgebra I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-12 credits26RM. Burger, M. Einsiedler
AbstractIntroduction and development of some basic algebraic structures - groups, rings, fields including Galois theory, representations of finite groups, algebras.

The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
Objective
ContentBasic notions and examples of groups;
Subgroups, Quotient groups and Homomorphisms,
Group actions and applications

Basic notions and examples of rings;
Ring Homomorphisms,
ideals, and quotient rings, rings of fractions
Euclidean domains, Principal ideal domains, Unique factorization
domains

Basic notions and examples of fields;
Field extensions, Algebraic extensions, Classical straight edge and compass constructions

Fundamentals of Galois theory
Representation theory of finite groups and algebras
LiteratureJoseph J. Rotman, "Advanced Modern Algebra" third edition, part 1,
Graduate Studies in Mathematics,Volume 165
American Mathematical Society
406-2284-AALMeasure and Integration
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RF. Da Lio
AbstractIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
ObjectiveBasic acquaintance with the abstract theory of measure and integration
ContentIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
Lecture notesno lecture notes
Literature1. P.R. Halmos, "Measure Theory", Springer
2. Extra material: Lecture Notes by Emmanuel Kowalski and Josef Teichmann from spring semester 2012, Link
3. Extra material: P. Cannarsa & T. D'Aprile, "Lecture Notes on Measure Theory and Functional Analysis", Link
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
406-2303-AALComplex Analysis
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RA. Bandeira
AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem.
Objective
LiteratureL. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

R.Remmert: Theory of Complex Functions.. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publication
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
406-2554-AALTopology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-6 credits13RP. Feller
AbstractTopics covered include: Topological and metric spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces.
ObjectiveAn introduction to topology i.e. the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures.
Lecture notesSee lecture homepage: Link
LiteratureJames Munkres: Topology
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.
406-2604-AALProbability and Statistics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
E-7 credits15RJ. Teichmann
Abstract- Statistical models
- Methods of moments
- Maximum likelihood estimation
- Hypothesis testing
- Confidence intervals
- Introductory Bayesian statistics
- Linear regression model
- Rudiments of high-dimensional statistics
ObjectiveThe goal of this part of the course is to provide a solid introduction into statistics. It offers of a wide overview of the main tools used in statistical inference. The course will start with an introduction to statistical models and end with some notions of high-dimensional statistics. Some time will be spent on proving certain important results. Tools from probability and measure theory will be assumed to be known and hence will be only and occasionally recalled.
Lecture notesScript of Prof. Dr. S. van de Geer
LiteratureThese references could be use complementary sources:

R. Berger and G. Casella, Statistical Inference
J. A. Rice, Mathematical Statistics and Data Analysis
L. Wasserman, All of Statistics
  •  Page  1  of  1