Search result: Catalogue data in Spring Semester 2021

Science, Technology, and Policy Master Information
Social Sciences
NumberTitleTypeECTSHoursLecturers
860-0005-01LColloquium Science, Technology, and Policy (FS) Information Restricted registration - show details
Only for Science, Technology, and Policy MSc.
O1 credit2KT. Schmidt
AbstractPresentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event.
ObjectivePresentations by invited guest speakers from academia and practice/policy. Students are assigned to play a leading role in the discussion and write a report on the respective event.
ContentSee program on the ISTP website: Link
860-0001-00LPublic Institutions and Policy-Making Processes Restricted registration - show details
Number of participants limited to 25.

Priority for Science, Technology, and Policy MSc.
O3 credits2GE. K. Smith, S. Bechtold, F. Schimmelfennig
AbstractStudents acquire the contextual knowledge for analyzing public policies. They learn why and how public policies and laws are developed, designed, and implemented at national and international levels, and what challenges arise in this regard.
ObjectivePublic policies result from decision-making processes that take place within formal institutions of the state (parliament, government, public administration, courts). That is, policies are shaped by the characteristics of decision-making processes and the characteristics of public institutions and related actors (e.g. interest groups). In this course, students acquire the contextual knowledge for analyzing public policies. They learn why and how public policies and laws are developed, designed, and implemented at national and international levels, and what challenges arise in this regard. The course is organized in three modules. The first module (Stefan Bechtold) examines basic concepts and the role of law, law-making, and law enforcement in modern societies. The second module (Thomas Bernauer) deals with the functioning of legislatures, governments, and interest groups. The third module (Frank Schimmelfennig) focuses on the European Union and international organisations.
ContentPublic policies result from decision-making processes that take place within formal institutions of the state (parliament, government, public administration, courts). That is, policies are shaped by the characteristics of decision-making processes and the characteristics of public institutions and related actors (e.g. interest groups). In this course, students acquire the contextual knowledge for analyzing public policies. They learn why and how public policies and laws are developed, designed, and implemented at national and international levels, and what challenges arise in this regard. The course is organized in three modules. The first module (Stefan Bechtold) examines basic concepts and the role of law, law-making, and law enforcement in modern societies. The second module (Thomas Bernauer) deals with the functioning of legislatures, governments, and interest groups. The third module (Frank Schimmelfennig) focuses on the European Union and international organisations.
Lecture notesReading materials will be distributed electronically to the students when the semester starts.
LiteratureBaylis, John, Steve Smith, and Patricia Owens (2014): The Globalization of World Politics. An Introduction to International Relations. Oxford: Oxford University Press.

Caramani, Daniele (ed.) (2014): Comparative Politics. Oxford: Oxford University Press.

Gilardi, Fabrizio (2012): Transnational Diffusion: Norms, Ideas, and Policies, in Carlsnaes, Walter, Thomas Risse and Beth Simmons, Handbook of International Relations, 2nd Edition, London: Sage, pp. 453-477.

Hage, Jaap and Bram Akkermans (eds.) (2nd edition 2017): Introduction to Law, Heidelberg: Springer.

Jolls, Christine (2013): Product Warnings, Debiasing, and Free Speech: The Case of Tobacco Regulation, Journal of Institutional and Theoretical Economics 169: 53-78.

Lelieveldt, Herman and Sebastiaan Princen (2011): The Politics of European Union. Cambridge: Cambridge University Press.

Lessig, Lawrence (2006): Code and Other Laws of Cyberspace, Version 2.0, New York: Basic Books. Available at Link.

Schimmelfennig, Frank and Ulrich Sedelmeier (2004): Governance by Conditionality: EU Rule Transfer to the Candidate Countries of Central and Eastern Europe, in: Journal of European Public Policy 11(4): 669-687.

Shipan, Charles V. and Craig Volden (2012): Policy Diffusion: Seven Lessons for Scholars and Practitioners. Public Administration Review 72(6): 788-796.

Sunstein, Cass R. (2014): The Limits of Quantification, California Law Review 102: 1369-1422.

Thaler, Richard H. and Cass R. Sunstein (2003): Libertarian Paternalism. American Economic Review: Papers & Proceedings 93: 175-179.
Prerequisites / NoticeThis is a Master level course. The course is capped at 25 students, with ISTP Master students having priority.
860-0042-00LStatistics 2 Restricted registration - show details
Only for Science, Technology and Policy MSc.
O4 credits1GK. Harttgen
AbstractThis course introduces students to key statistical methods for analyzing social science data with a special emphasis on causal inference and policy evaluation.
ObjectiveStudents
- have a sound understanding of standard regression techniques
- know strategies to test causal hypotheses using regression analysis and/or experimental methods
- are able to formulate and implement a regression model for a particular policy question and a particular type of data
- are able to critically interpret results of applied statistics, in particular, regarding causal inference
- are able to critically read and assess published studies on policy evaluation
- are able to use the statistical software Stata for data analysis
ContentThe topics covered in the first part of the course are a revision and linear regression and non-linear regression techniques such as probit and logit regression analysis. The second part of the course focuses on causal inference and introduces methods such as panel data analysis, difference-in-difference methods, instrumental variable estimation, regression discontinuity design, and randomized controlled trials used for policy evaluation. The course shows how the various methods differ in terms of the required identifying assumptions to infer causality as well as the data needs.

Students will apply the methods from the lectures by solving bi-weekly assignments using statistical software and data sets provided by the instructors. These data sets will cover topics at the interface of policy, technology and society. Solving the assignments contributes to the final grade with a weight of 30%.
860-0032-00LIntroductory Macroeconomics Restricted registration - show details
Number of participants is limited to 30.
Prerequisite: An introductory course in Economics is required to sign up for this course.

Priority for Science, Technology, and Policy MSc.
O3 credits2VR. Pleninger
AbstractThis course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?
ObjectiveThis lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.
ContentThis course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer. Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.
860-0033-00LBig Data for Public Policy Information Restricted registration - show details
Only for Master students and PhD students.
O3 credits2GE. Ash, M. Guillot
AbstractThis course provides an introduction to big data methods for public policy analysis. Students will put these techniques to work on a course project using real-world data, to be designed and implemented in consultation with the instructors.
ObjectiveMany policy problems involve prediction. For example, a budget office might want to predict the number of applications for benefits payments next month, based on labor market conditions this month. This course provides a hands-on introduction to the "big data" techniques for making such predictions.
ContentMany policy problems involve prediction. For example, a budget office might want to predict the number of applications for benefits payments next month, based on labor market conditions this month. This course provides a hands-on introduction to the "big data" techniques for making such predictions. These techniques include:

-- procuring big datasets, especially through web scraping or API interfaces, including social media data;
-- pre-processing and dimension reduction of massive datasets for tractable computation;
-- machine learning for predicting outcomes, including how to select and tune the model, evaluate model performance using held-out test data, and report results;
-- interpreting machine learning model predictions to understand what is going on inside the black box;
-- data visualization including interactive web apps.

Students will put these techniques to work on a course project using real-world data, to be designed and implemented in consultation with the instructors.
Minor in Natural Sciences and Engineering
Urbanization and Planning
NumberTitleTypeECTSHoursLecturers
102-0838-00LWater Supply, Sanitation and Waste Infrastructure and Services in Developing CountriesW3 credits2GC. Zurbrügg
AbstractIntroduction to water supply, excreta, wastewater and solid waste management in developing countries. Highlights links between infrastructure, services and health, resource conservation and environmental protection. New concepts and approaches for sustainable sanitation infrastructure and services for developing countries - especially poor urban areas.
ObjectiveStudents receive an introduction to issues of water supply, excreta, waste water and solid waste management in developing countries. They understand the connections between water, wastewater and waste management, health, resource conservation and environmental protection. Besides, they learn how water supply, wastewater and solid waste infrastructure and services can be combined and improved, in order to achieve the development policy goals in terms of disease prevention, resource conservation, and environmental protection.
ContentOverview of the global health situation, water supply, and liquid and solid waste management situation in developing countries. Technical and scientific fundamentals of water supply, sanitation and solid waste management. Material flows in water supply, sanitation and waste management. New concepts and approaches for sustainable sanitation infrastructure and services for developing countries - especially poor urban areas. Exercises: students will work in groups on a case study and develop improvement options for water, sanitation and waste management.
Lecture notesCourse notes and further reading will be made available on the ETHZ Moodle portal.
LiteratureThe selected literature references will be made available on Moodle.
Prerequisites / NoticeStudents will work in groups on a case study and develop improvement options for water, sanitation and waste management. The case study work will be marked (1/3 of final grade). Written Semesterendprüfung of 90 min (counts for 2/3 of final grade)
103-0517-00LUrban and Spatial EconomicsW3 credits2VR. H. van Nieuwkoop
AbstractThis course explores the economic factors which influence location decisions of households and firms, and it explores theories of how these decisions induce the formation of cities. The course will cover the neoclassical models of land use, concepts from the new economic geography, zoning, and transportation and traffic congestion.
ObjectiveThe objective of the course is to provide graduate students with an understanding of the economic factors which give rise to urban spatial structure and the models which have been employed to study these processes. The course aims to help students develop an appreciation for the use of economic models in both positive and normative frameworks. We will assess both the history of thought regarding the role of markets in creating urban development, and we will read about modern theories of externalities and economic factors which induce agglomeration. The final section of the course will focus on transportation problems in urban areas and the use of economic models to assess public policy measures to deal with congestion and associated externalities.
ContentOutline of Lectures

Topic 1: Why do cities exist?
Topic 2: The Basic Muth-Mills model
Topic 3: The New Economic Geography
Topic 4: Business demand for land and Von Thünen's model)
Topic 5: Urban spatial structure
Topic 6: Land use control
Topic 7: City size and city growth
Topic 8: Traffic externalities and congestion
Topic 9: Public transport
Topic 10: The housing crisis
LiteratureTextbook

o Urban Economics by Arthur O'Sullivan, McGraw-Hill.

Ancillary Texts

o Lectures on Urban Economics, K. Brückner, 2011, The MIT Press

o Cities, agglomeration and spatial equilibrium by E. L. Glaeser, 2008, Oxford University Press.

o A Companion to Urban Economics, Richard Arnott and Daniel McMillen (eds.), Blackwell, 2006.

o The new introduction to geographical economics, Steven Brakman, Harry Garretsen and Charles van Marrewijk, Cambridge.

o Urban transport economics, by K. A. Small and E. Verhoef, Routledge.
103-0448-01LTransformation of Urban Landscapes
Only for masters students, otherwise a special permit of the lecturer is necessary.
W3 credits2GJ. Van Wezemael, A. Gonzalez Martinez
AbstractThe lecture course addresses the transformation of urban landscapes towards sustainable inward development. The course reconnects two largely separated complexity approaches in «spatial planning» and «urban sciences» as a basic framework to look at a number of spatial systems considering economic, political, and cultural factors. Focus lies on participation and interaction of students in groups.
Objective- Understand cities as complex adaptive systems
- Understand planning in a complex context and planning competitions as decision-making
- Seeing cities through big data and understand (Urban) Governance as self-organization
- Learn Design-Thinking methods for solving problems of inward development
- Practice presentation skills
- Practice argumentation and reflection skills by writing critiques
- Practice writing skills in a small project
- Practice teamwork
ContentStarting point and red thread of the lecture course is the transformation of urban landscapes as we can see for example across the Swiss Mittelland - but in fact also globally. The lecture course presents a theoretical foundation to see cities as complex systems. On this basis it addresses practical questions as well as the complex interplay of economic, political or spatial systems.

While cities and their planning were always complex the new era of globalization exposed and brought to the fore this complexity. It created a situation that the complexity of cities can no longer be ignored. The reason behind this is the networking of hitherto rather isolated places and systems across scales on the basis of Information and Communication Technologies. «Parts» of the world still look pretty much the same but we have networked them and made them strongly interdependent. This networking fuels processes of self-organization. In this view regions emerge from a multitude of relational networks of varying geographical reach and they display intrinsic timescales at which problems develop. In such a context, an increasing number of planning problems remain unaffected by either «command-and-control» approaches or instruments of spatial development that are one-sidedly infrastructure- or land-use orientated. In fact, they urge for novel, more open and more bottom-up assembling modes of governance and a «smart» focus on how space is actually used. Thus, in order to be effective, spatial planning and governance must be reconceptualised based on a complexity understanding of cities and regions, considering self-organizing and participatory approaches and the increasingly available wealth of data.
LiteratureA reader with original papers will be provided via the ILIAS system.
Prerequisites / NoticeOnly for masters students, otherwise a special permit of the lecturer is necessary.
101-0481-00LReadings in Transport PolicyW3 credits2GD. J. Reck
AbstractThis course will explore the issues and constraints of transport policy through the joint readings of a set of relevant papers.

The class will meet every three weeks to discuss the texts.
ObjectiveFamiliarize the students with issues of transport policy making and the conflicts arising.

Train the ability to read critically and to summarize his/her understanding for him/herself and others through a review paper, paper abstracts and a paper review.
102-0338-01LWaste Management and Circular EconomyW3 credits2GM. Haupt, U. Baier
AbstractUnderstanding the fundamental concepts of advanced waste management and circular economy and, in more detail, on biological processes for waste treatment. Application of concepts on various waste streams, including household and industrial waste streams. Insights into environmental aspects of different waste treatment technologies and waste economy.
ObjectiveThe purpose of this course is to study the fundamental concepts of waste management in Switzerland and globally and learn about new concepts such as Circular Economy. In-depth knowledge on biological processes for waste treatments should be acquired and applied in case studies. Based on this course, you should be able to understand national waste management strategies and related treatment technologies. Treatment plants and valorization concepts for biomass and organic waste should be understood. Furthermore, future designs of waste treatment processes can be evaluated using basic process understanding and knowledge obtained from the current literature.
ContentNational waste management
Waste as a resource
Circular Economy
Assessment tools for waste management strategies
Plastic recycling
Thermal waste treatment
Emerging technologies
Organic Wastes in Switzerland
Anaerobic Digestion & Biogas
Composting process technologies
Organic Waste Hygiene
Product Quality & Use
Waste Economy and environmental aspects
Lecture notesHandouts
Exercises based on literature
LiteratureDeublein, D. and Steinhauser, A. (2011): Biogas from Waste and Renewable Resources: An Introduction. 2nd Edition, Wiley VCH, Weinheim. --> One of the leading books on the subject of anaerobic digestion and biogas, covering all aspects from biochemical and microbial basics to planning and running of biogas plants as well as different technology concepts and biogas upgrade & utilization. We will be using selected chapters only in this course.

Lohri, C.R., S. Diener, I. Zabaleta, A. Mertenat, and C. Zurbrügg. 2017. Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Reviews in Environmental Science and Biotechnology 16(1): 81–130.

Haupt, M., C. Vadenbo, and S. Hellweg. 2017. Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System. Journal of Industrial Ecology 21(3): 615–627.

Schweizerische Qualitätsrichtlinie 2010 der Branche für Kompost und Gärgut: Link

More information about biowaste treatment in Switzerland (Link) and Europe (www.compostnetwork.info and Link)
Prerequisites / NoticeThere will be complementary exercises going along with some of the lectures, which focus on real life aspects of waste management. Some of the exercises will be solved during lessons whereas others will have to be dealt with as homework.
To pass the course and to achieve credits it is required to pass the examination successfully (Mark 4 or higher). The written examination covers all topics of the course and is based on handouts and on selected literature
101-0588-01LRe-/Source the Built EnvironmentW3 credits2SG. Habert
AbstractThe course focuses on material choice and energy strategies to limit the environmental impact of construction sector. During the course, specific topics will be presented (construction technologies, environmental policies, social consequences of material use, etc.). The course aims to present sustainable options to tackle the global challenge we are facing and show that "it is not too late".
ObjectiveAfter the lecture series, the students are aware of the main challenges for the production and use of building materials.

They know the different technologies/propositions available, and environmental consequence of a choice.

They understand in which conditions/context one resource/technology will be more appropriate than another
ContentA general presentation of the global context allows to identify the objectives that as engineer, material scientist or architect needs to achieve to create a sustainable built environment.

The course is then conducted as a serie of guest lectures focusing on one specific aspect to tackle this global challenge and show that "it is not too late".

The lecture series is divided as follows:
- General presentation
- Notion of resource depletion, resilience, criticality, decoupling, etc.
- Guest lectures covering different resources and proposing different option to build or maintain a sustainable built environment.
Lecture notesFor each lecture slides will be provided.
Prerequisites / NoticeThe lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and USYS.

No lecture will be given during Seminar week.
851-0735-11LEnvironmental Regulation: Law and Policy Restricted registration - show details
Number of participants limited to 20.

Particularly suitable for students of D-USYS
W3 credits1SJ. van Zeben
AbstractThe aim of this course is to make students with a technical scientific background aware of the legal and political context of environmental policy in order to place technical solutions in their regulatory context.
ObjectiveThe aim of this course is to equip students with a legal and regulatory skill-set that allows them to translate their technical knowledge into a policy brief directed at legally trained regulators. More generally, it aims to inform students with a technical scientific background of the legal and political context of environmental policy. The focus of the course will be on international and European issues and regulatory frameworks - where relevant, the position of Switzerland within these international networks will also be discussed.
ContentTopics covered in lectures:

(1) Environmental Regulation
a. Perspectives
b. Regulatory Challenges of Environment Problems
c. Regulatory Tools
(2) Law: International, European and national laws
a. International law
b. European law
c. National law
(3) Policy: Case studies

Assessment:
(i) Class participation (25%): Students will be expected to contribute to class discussions and prepare short memos on class readings.
(ii) Exam (75%) consisting of two parts:
a. Policy brief - a maximum of 2 pages (including graphs and tables);
b. Background document to the policy brief - this document sets out a more detailed and academic overview of the topic (maximum 8 pages including graphs and tables);
Lecture notesThe course is taught as an interactive seminar and in-class participation is expected from the students. Participation will be capped at 20 in order to maintain the interactive nature of the classes.

All classes, readings, and assignments, are in English.

Teaching will take place over three days in January.
LiteratureThe book for this course is van Zeben and Rowell, A Guide to EU Environmental Law, University of California Press, 2020 - available via Link.

Electronic copy of remaining readings will be provided to the students at no cost before the start of the lectures.
Prerequisites / NoticeNo specific pre-existing legal knowledge is required, however all students must have successfully completed Grundzüge des Rechts (851-0708-00 V) or an equivalent course.

The course is (inter)related to materials discussed in Politikwissenschaft: Grundlagen (851-0577-00 V), Ressourcen- und Umweltökonomie (751-1551-00 V), Umweltrecht: Konzepte und Rechtsgebiete (851-0705-01 V), Rechtlicher Umgang mit natürlichen Ressourcen (701-0743-01 V), Environmental Governance (701-1651-00 G), Policy and Economics of Ecosystem Services (701-1653-00 G), International Environmental Politics: Part I (851-0594-00 V).
101-0478-00LMeasurement and Modelling of Travel BehaviourW6 credits4GK. W. Axhausen
AbstractComprehensive introduction to survey methods in transport planning and modeling of travel behavior, using advanced discrete choice models.
ObjectiveEnabling the student to understand and apply the various measurement approaches and models of modelling travel behaviour.
ContentBehavioral model and measurement; travel diary, design process, hypothetical markets, discrete choice model, parameter estimation, pattern of travel behaviour, market segments, simulation, advanced discrete choice models
Lecture notesVarious papers and notes are distributed during the course.
Energy and Mobility
NumberTitleTypeECTSHoursLecturers
529-0191-01LElectrochemical Energy Conversion and Storage TechnologiesW4 credits3GL. Gubler, E. Fabbri, J. Herranz Salañer
AbstractThe course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system.
ObjectiveStudents will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated.
ContentOverview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis.
Lecture notesall lecture materials will be available for download on the course website.
Literature- M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019).
- C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007).
- T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018)
Prerequisites / NoticeBasic physical chemistry background required, prior knowledge of electrochemistry basics desired.
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 credits3GM. Mazzotti, A. Bardow, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter
AbstractCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
ObjectiveThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
ContentBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
Lecture notesPower Point slides and distributed handouts
LiteratureIPCC Special Report on Global Warming of 1.5°C, 2018.
Link

IPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Prerequisites / NoticeExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0206-00LEnergy Systems and Power EngineeringW4 credits2V + 2UR. S. Abhari, A. Steinfeld
AbstractIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ObjectiveIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ContentWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
Lecture notesVorlesungsunterlagen werden verteilt
103-0448-01LTransformation of Urban Landscapes
Only for masters students, otherwise a special permit of the lecturer is necessary.
W3 credits2GJ. Van Wezemael, A. Gonzalez Martinez
AbstractThe lecture course addresses the transformation of urban landscapes towards sustainable inward development. The course reconnects two largely separated complexity approaches in «spatial planning» and «urban sciences» as a basic framework to look at a number of spatial systems considering economic, political, and cultural factors. Focus lies on participation and interaction of students in groups.
Objective- Understand cities as complex adaptive systems
- Understand planning in a complex context and planning competitions as decision-making
- Seeing cities through big data and understand (Urban) Governance as self-organization
- Learn Design-Thinking methods for solving problems of inward development
- Practice presentation skills
- Practice argumentation and reflection skills by writing critiques
- Practice writing skills in a small project
- Practice teamwork
ContentStarting point and red thread of the lecture course is the transformation of urban landscapes as we can see for example across the Swiss Mittelland - but in fact also globally. The lecture course presents a theoretical foundation to see cities as complex systems. On this basis it addresses practical questions as well as the complex interplay of economic, political or spatial systems.

While cities and their planning were always complex the new era of globalization exposed and brought to the fore this complexity. It created a situation that the complexity of cities can no longer be ignored. The reason behind this is the networking of hitherto rather isolated places and systems across scales on the basis of Information and Communication Technologies. «Parts» of the world still look pretty much the same but we have networked them and made them strongly interdependent. This networking fuels processes of self-organization. In this view regions emerge from a multitude of relational networks of varying geographical reach and they display intrinsic timescales at which problems develop. In such a context, an increasing number of planning problems remain unaffected by either «command-and-control» approaches or instruments of spatial development that are one-sidedly infrastructure- or land-use orientated. In fact, they urge for novel, more open and more bottom-up assembling modes of governance and a «smart» focus on how space is actually used. Thus, in order to be effective, spatial planning and governance must be reconceptualised based on a complexity understanding of cities and regions, considering self-organizing and participatory approaches and the increasingly available wealth of data.
LiteratureA reader with original papers will be provided via the ILIAS system.
Prerequisites / NoticeOnly for masters students, otherwise a special permit of the lecturer is necessary.
151-0254-00LEnvironmental Aspects of Future Mobility
Note: previous course title in FS20 "Environmental Aspects of IC-Engines"
W4 credits2V + 1UY. Wright, P. Dimopoulos Eggenschwiler
AbstractThe course describes and assesses the environmental performance of current and future Mobility/Transportation and Transformation paths to sustainability. It focuses in particular on the future role of renewable synthetic chemical energy carriers from a technology point of view.
ObjectiveThe students should understand the systemic nature of the Mobility/Transportation System and be able to elaborate solutions for the defossilization of the sector. At the end of the course they should be capable to assess alternative technologies for the different subsectors for transport of people and freight including the “upstream” energy supply processes.
ContentMobility system structure, future demand trends for the various sectors (road, marine, aviation, people, freight) and appropriate energy carriers per application. Brief overview over conversion technologies. Combustion fundamentals and pollutant minimization methods for conventional and renewable fuels. Exhaust gas of aftertreatment for combustion engines and atmospheric immissions. Methods for producing renewable synthetic fuels (electrolysis, methanation/synthesis of higher hydrocarbons etc.) and related infrastructure requirements. Sector coupling and estimates of requested electricity for direct and indirect (via chemical energy carriers) electrification of mobility and appropriate supply sources.
Data and Computer Science
NumberTitleTypeECTSHoursLecturers
252-3900-00LBig Data for Engineers Information
This course is not intended for Computer Science and Data Science MSc students!
W6 credits2V + 2U + 1AG. Fourny
AbstractThis course is part of the series of database lectures offered to all ETH departments, together with Information Systems for Engineers. It introduces the most recent advances in the database field: how do we scale storage and querying to Petabytes of data, with trillions of records? How do we deal with heterogeneous data sets? How do we deal with alternate data shapes like trees and graphs?
ObjectiveThis lesson is complementary with Information Systems for Engineers as they cover different time periods of database history and practices -- you can even take both lectures at the same time.

The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations.

This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm".

Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small.

The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof.

After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently.
ContentThis course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe.

It targets specifically students with a scientific or Engineering, but not Computer Science, background.

We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem.

No data is harmed during this course, however, please be psychologically prepared that our data may not always be in normal form.

- physical storage: distributed file systems (HDFS), object storage(S3), key-value stores

- logical storage: document stores (MongoDB), column stores (HBase)

- data formats and syntaxes (XML, JSON, RDF, CSV, YAML, protocol buffers, Avro)

- data shapes and models (tables, trees)

- type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +)

- an overview of functional, declarative programming languages across data shapes (SQL, JSONiq)

- the most important query paradigms (selection, projection, joining, grouping, ordering, windowing)

- paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark)

- resource management (YARN)

- what a data center is made of and why it matters (racks, nodes, ...)

- underlying architectures (internal machinery of HDFS, HBase, Spark)

- optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing)

- applications.

Large scale analytics and machine learning are outside of the scope of this course.
LiteraturePapers from scientific conferences and journals. References will be given as part of the course material during the semester.
Prerequisites / NoticeThis course is not intended for Computer Science and Data Science students. Computer Science and Data Science students interested in Big Data MUST attend the Master's level Big Data lecture, offered in Fall.

Requirements: programming knowledge (Java, C++, Python, PHP, ...) as well as basic knowledge on databases (SQL). If you have already built your own website with a backend SQL database, this is perfect.

Attendance is especially recommended to those who attended Information Systems for Engineers last Fall, which introduced the "good old databases of the 1970s" (SQL, tables and cubes). However, this is not a strict requirement, and it is also possible to take the lectures in reverse order.
227-0558-00LPrinciples of Distributed Computing Information W7 credits2V + 2U + 2AR. Wattenhofer, M. Ghaffari
AbstractWe study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques.
ObjectiveDistributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week.
ContentDistributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems.

Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds
Lecture notesAvailable. Our course script is used at dozens of other universities around the world.
LiteratureLecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world.

Distributed Computing: Fundamentals, Simulations and Advanced Topics
Hagit Attiya, Jennifer Welch.
McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6

Introduction to Algorithms
Thomas Cormen, Charles Leiserson, Ronald Rivest.
The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8

Disseminatin of Information in Communication Networks
Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger.
Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2

Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes
Frank Thomson Leighton.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1

Distributed Computing: A Locality-Sensitive Approach
David Peleg.
Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8
Prerequisites / NoticeCourse pre-requisites: Interest in algorithmic problems. (No particular course needed.)
  •  Page  1  of  5 Next page Last page     All